You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

183 lines
8.7 KiB

4 years ago
  1. Metadata-Version: 2.1
  2. Name: gensim
  3. Version: 3.6.0
  4. Summary: Python framework for fast Vector Space Modelling
  5. Home-page: http://radimrehurek.com/gensim
  6. Author: Radim Rehurek
  7. Author-email: me@radimrehurek.com
  8. License: LGPLv2.1
  9. Download-URL: http://pypi.python.org/pypi/gensim
  10. Keywords: Singular Value Decomposition,SVD,Latent Semantic Indexing,LSA,LSI,Latent Dirichlet Allocation,LDA,Hierarchical Dirichlet Process,HDP,Random Projections,TFIDF,word2vec
  11. Platform: any
  12. Classifier: Development Status :: 5 - Production/Stable
  13. Classifier: Environment :: Console
  14. Classifier: Intended Audience :: Science/Research
  15. Classifier: License :: OSI Approved :: GNU Lesser General Public License v2 or later (LGPLv2+)
  16. Classifier: Operating System :: OS Independent
  17. Classifier: Programming Language :: Python :: 2.7
  18. Classifier: Programming Language :: Python :: 3.5
  19. Classifier: Programming Language :: Python :: 3.6
  20. Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
  21. Classifier: Topic :: Scientific/Engineering :: Information Analysis
  22. Classifier: Topic :: Text Processing :: Linguistic
  23. Provides-Extra: test
  24. Provides-Extra: distributed
  25. Provides-Extra: docs
  26. Provides-Extra: test-win
  27. Requires-Dist: numpy (>=1.11.3)
  28. Requires-Dist: scipy (>=0.18.1)
  29. Requires-Dist: six (>=1.5.0)
  30. Requires-Dist: smart-open (>=1.2.1)
  31. Provides-Extra: distributed
  32. Requires-Dist: Pyro4 (>=4.27); extra == 'distributed'
  33. Provides-Extra: docs
  34. Requires-Dist: pytest; extra == 'docs'
  35. Requires-Dist: pytest-rerunfailures; extra == 'docs'
  36. Requires-Dist: mock; extra == 'docs'
  37. Requires-Dist: cython; extra == 'docs'
  38. Requires-Dist: pyemd; extra == 'docs'
  39. Requires-Dist: testfixtures; extra == 'docs'
  40. Requires-Dist: scikit-learn; extra == 'docs'
  41. Requires-Dist: Morfessor (==2.0.2a4); extra == 'docs'
  42. Requires-Dist: annoy; extra == 'docs'
  43. Requires-Dist: tensorflow (<=1.3.0); extra == 'docs'
  44. Requires-Dist: keras (<=2.1.4,>=2.0.4); extra == 'docs'
  45. Requires-Dist: Pyro4 (>=4.27); extra == 'docs'
  46. Requires-Dist: sphinx; extra == 'docs'
  47. Requires-Dist: sphinxcontrib-napoleon; extra == 'docs'
  48. Requires-Dist: plotly; extra == 'docs'
  49. Requires-Dist: pattern; extra == 'docs'
  50. Requires-Dist: sphinxcontrib.programoutput; extra == 'docs'
  51. Provides-Extra: test
  52. Requires-Dist: pytest; extra == 'test'
  53. Requires-Dist: pytest-rerunfailures; extra == 'test'
  54. Requires-Dist: mock; extra == 'test'
  55. Requires-Dist: cython; extra == 'test'
  56. Requires-Dist: pyemd; extra == 'test'
  57. Requires-Dist: testfixtures; extra == 'test'
  58. Requires-Dist: scikit-learn; extra == 'test'
  59. Requires-Dist: Morfessor (==2.0.2a4); extra == 'test'
  60. Requires-Dist: annoy; extra == 'test'
  61. Requires-Dist: tensorflow (<=1.3.0); extra == 'test'
  62. Requires-Dist: keras (<=2.1.4,>=2.0.4); extra == 'test'
  63. Provides-Extra: test-win
  64. Requires-Dist: pytest; extra == 'test-win'
  65. Requires-Dist: pytest-rerunfailures; extra == 'test-win'
  66. Requires-Dist: mock; extra == 'test-win'
  67. Requires-Dist: cython; extra == 'test-win'
  68. Requires-Dist: pyemd; extra == 'test-win'
  69. Requires-Dist: testfixtures; extra == 'test-win'
  70. Requires-Dist: scikit-learn; extra == 'test-win'
  71. Requires-Dist: Morfessor (==2.0.2a4); extra == 'test-win'
  72. ==============================================
  73. gensim -- Topic Modelling in Python
  74. ==============================================
  75. |Travis|_
  76. |Wheel|_
  77. .. |Travis| image:: https://img.shields.io/travis/RaRe-Technologies/gensim/develop.svg
  78. .. |Wheel| image:: https://img.shields.io/pypi/wheel/gensim.svg
  79. .. _Travis: https://travis-ci.org/RaRe-Technologies/gensim
  80. .. _Downloads: https://pypi.python.org/pypi/gensim
  81. .. _License: http://radimrehurek.com/gensim/about.html
  82. .. _Wheel: https://pypi.python.org/pypi/gensim
  83. Gensim is a Python library for *topic modelling*, *document indexing* and *similarity retrieval* with large corpora.
  84. Target audience is the *natural language processing* (NLP) and *information retrieval* (IR) community.
  85. Features
  86. ---------
  87. * All algorithms are **memory-independent** w.r.t. the corpus size (can process input larger than RAM, streamed, out-of-core),
  88. * **Intuitive interfaces**
  89. * easy to plug in your own input corpus/datastream (trivial streaming API)
  90. * easy to extend with other Vector Space algorithms (trivial transformation API)
  91. * Efficient multicore implementations of popular algorithms, such as online **Latent Semantic Analysis (LSA/LSI/SVD)**,
  92. **Latent Dirichlet Allocation (LDA)**, **Random Projections (RP)**, **Hierarchical Dirichlet Process (HDP)** or **word2vec deep learning**.
  93. * **Distributed computing**: can run *Latent Semantic Analysis* and *Latent Dirichlet Allocation* on a cluster of computers.
  94. * Extensive `documentation and Jupyter Notebook tutorials <https://github.com/RaRe-Technologies/gensim/#documentation>`_.
  95. If this feature list left you scratching your head, you can first read more about the `Vector
  96. Space Model <http://en.wikipedia.org/wiki/Vector_space_model>`_ and `unsupervised
  97. document analysis <http://en.wikipedia.org/wiki/Latent_semantic_indexing>`_ on Wikipedia.
  98. Installation
  99. ------------
  100. This software depends on `NumPy and Scipy <http://www.scipy.org/Download>`_, two Python packages for scientific computing.
  101. You must have them installed prior to installing `gensim`.
  102. It is also recommended you install a fast BLAS library before installing NumPy. This is optional, but using an optimized BLAS such as `ATLAS <http://math-atlas.sourceforge.net/>`_ or `OpenBLAS <http://xianyi.github.io/OpenBLAS/>`_ is known to improve performance by as much as an order of magnitude. On OS X, NumPy picks up the BLAS that comes with it automatically, so you don't need to do anything special.
  103. The simple way to install `gensim` is::
  104. pip install -U gensim
  105. Or, if you have instead downloaded and unzipped the `source tar.gz <http://pypi.python.org/pypi/gensim>`_ package,
  106. you'd run::
  107. python setup.py test
  108. python setup.py install
  109. For alternative modes of installation (without root privileges, development
  110. installation, optional install features), see the `install documentation <http://radimrehurek.com/gensim/install.html>`_.
  111. This version has been tested under Python 2.7, 3.5 and 3.6. Support for Python 2.6, 3.3 and 3.4 was dropped in gensim 1.0.0. Install gensim 0.13.4 if you *must* use Python 2.6, 3.3 or 3.4. Support for Python 2.5 was dropped in gensim 0.10.0; install gensim 0.9.1 if you *must* use Python 2.5). Gensim's github repo is hooked against `Travis CI for automated testing <https://travis-ci.org/RaRe-Technologies/gensim>`_ on every commit push and pull request.
  112. How come gensim is so fast and memory efficient? Isn't it pure Python, and isn't Python slow and greedy?
  113. --------------------------------------------------------------------------------------------------------
  114. Many scientific algorithms can be expressed in terms of large matrix operations (see the BLAS note above). Gensim taps into these low-level BLAS libraries, by means of its dependency on NumPy. So while gensim-the-top-level-code is pure Python, it actually executes highly optimized Fortran/C under the hood, including multithreading (if your BLAS is so configured).
  115. Memory-wise, gensim makes heavy use of Python's built-in generators and iterators for streamed data processing. Memory efficiency was one of gensim's `design goals <http://radimrehurek.com/gensim/about.html>`_, and is a central feature of gensim, rather than something bolted on as an afterthought.
  116. Documentation
  117. -------------
  118. * `QuickStart`_
  119. * `Tutorials`_
  120. * `Tutorial Videos`_
  121. * `Official Documentation and Walkthrough`_
  122. Citing gensim
  123. -------------
  124. When `citing gensim in academic papers and theses <https://scholar.google.cz/citations?view_op=view_citation&hl=en&user=9vG_kV0AAAAJ&citation_for_view=9vG_kV0AAAAJ:u-x6o8ySG0sC>`_, please use this BibTeX entry::
  125. @inproceedings{rehurek_lrec,
  126. title = {{Software Framework for Topic Modelling with Large Corpora}},
  127. author = {Radim {\v R}eh{\r u}{\v r}ek and Petr Sojka},
  128. booktitle = {{Proceedings of the LREC 2010 Workshop on New
  129. Challenges for NLP Frameworks}},
  130. pages = {45--50},
  131. year = 2010,
  132. month = May,
  133. day = 22,
  134. publisher = {ELRA},
  135. address = {Valletta, Malta},
  136. language={English}
  137. }
  138. ----------------
  139. Gensim is open source software released under the `GNU LGPLv2.1 license <http://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html>`_.
  140. Copyright (c) 2009-now Radim Rehurek
  141. |Analytics|_
  142. .. |Analytics| image:: https://ga-beacon.appspot.com/UA-24066335-5/your-repo/page-name
  143. .. _Analytics: https://github.com/igrigorik/ga-beacon
  144. .. _Official Documentation and Walkthrough: http://radimrehurek.com/gensim/
  145. .. _Tutorials: https://github.com/RaRe-Technologies/gensim/blob/develop/tutorials.md#tutorials
  146. .. _Tutorial Videos: https://github.com/RaRe-Technologies/gensim/blob/develop/tutorials.md#videos
  147. .. _QuickStart: https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/gensim%20Quick%20Start.ipynb