|
|
- #
- # The Python Imaging Library.
- # $Id$
- #
- # standard image operations
- #
- # History:
- # 2001-10-20 fl Created
- # 2001-10-23 fl Added autocontrast operator
- # 2001-12-18 fl Added Kevin's fit operator
- # 2004-03-14 fl Fixed potential division by zero in equalize
- # 2005-05-05 fl Fixed equalize for low number of values
- #
- # Copyright (c) 2001-2004 by Secret Labs AB
- # Copyright (c) 2001-2004 by Fredrik Lundh
- #
- # See the README file for information on usage and redistribution.
- #
-
- from . import Image
- from ._util import isStringType
- import operator
- import functools
- import warnings
-
-
- #
- # helpers
-
- def _border(border):
- if isinstance(border, tuple):
- if len(border) == 2:
- left, top = right, bottom = border
- elif len(border) == 4:
- left, top, right, bottom = border
- else:
- left = top = right = bottom = border
- return left, top, right, bottom
-
-
- def _color(color, mode):
- if isStringType(color):
- from . import ImageColor
- color = ImageColor.getcolor(color, mode)
- return color
-
-
- def _lut(image, lut):
- if image.mode == "P":
- # FIXME: apply to lookup table, not image data
- raise NotImplementedError("mode P support coming soon")
- elif image.mode in ("L", "RGB"):
- if image.mode == "RGB" and len(lut) == 256:
- lut = lut + lut + lut
- return image.point(lut)
- else:
- raise IOError("not supported for this image mode")
-
- #
- # actions
-
-
- def autocontrast(image, cutoff=0, ignore=None):
- """
- Maximize (normalize) image contrast. This function calculates a
- histogram of the input image, removes **cutoff** percent of the
- lightest and darkest pixels from the histogram, and remaps the image
- so that the darkest pixel becomes black (0), and the lightest
- becomes white (255).
-
- :param image: The image to process.
- :param cutoff: How many percent to cut off from the histogram.
- :param ignore: The background pixel value (use None for no background).
- :return: An image.
- """
- histogram = image.histogram()
- lut = []
- for layer in range(0, len(histogram), 256):
- h = histogram[layer:layer+256]
- if ignore is not None:
- # get rid of outliers
- try:
- h[ignore] = 0
- except TypeError:
- # assume sequence
- for ix in ignore:
- h[ix] = 0
- if cutoff:
- # cut off pixels from both ends of the histogram
- # get number of pixels
- n = 0
- for ix in range(256):
- n = n + h[ix]
- # remove cutoff% pixels from the low end
- cut = n * cutoff // 100
- for lo in range(256):
- if cut > h[lo]:
- cut = cut - h[lo]
- h[lo] = 0
- else:
- h[lo] -= cut
- cut = 0
- if cut <= 0:
- break
- # remove cutoff% samples from the hi end
- cut = n * cutoff // 100
- for hi in range(255, -1, -1):
- if cut > h[hi]:
- cut = cut - h[hi]
- h[hi] = 0
- else:
- h[hi] -= cut
- cut = 0
- if cut <= 0:
- break
- # find lowest/highest samples after preprocessing
- for lo in range(256):
- if h[lo]:
- break
- for hi in range(255, -1, -1):
- if h[hi]:
- break
- if hi <= lo:
- # don't bother
- lut.extend(list(range(256)))
- else:
- scale = 255.0 / (hi - lo)
- offset = -lo * scale
- for ix in range(256):
- ix = int(ix * scale + offset)
- if ix < 0:
- ix = 0
- elif ix > 255:
- ix = 255
- lut.append(ix)
- return _lut(image, lut)
-
-
- def colorize(image, black, white, mid=None, blackpoint=0,
- whitepoint=255, midpoint=127):
- """
- Colorize grayscale image.
- This function calculates a color wedge which maps all black pixels in
- the source image to the first color and all white pixels to the
- second color. If **mid** is specified, it uses three-color mapping.
- The **black** and **white** arguments should be RGB tuples or color names;
- optionally you can use three-color mapping by also specifying **mid**.
- Mapping positions for any of the colors can be specified
- (e.g. **blackpoint**), where these parameters are the integer
- value corresponding to where the corresponding color should be mapped.
- These parameters must have logical order, such that
- **blackpoint** <= **midpoint** <= **whitepoint** (if **mid** is specified).
-
- :param image: The image to colorize.
- :param black: The color to use for black input pixels.
- :param white: The color to use for white input pixels.
- :param mid: The color to use for midtone input pixels.
- :param blackpoint: an int value [0, 255] for the black mapping.
- :param whitepoint: an int value [0, 255] for the white mapping.
- :param midpoint: an int value [0, 255] for the midtone mapping.
- :return: An image.
- """
-
- # Initial asserts
- assert image.mode == "L"
- if mid is None:
- assert 0 <= blackpoint <= whitepoint <= 255
- else:
- assert 0 <= blackpoint <= midpoint <= whitepoint <= 255
-
- # Define colors from arguments
- black = _color(black, "RGB")
- white = _color(white, "RGB")
- if mid is not None:
- mid = _color(mid, "RGB")
-
- # Empty lists for the mapping
- red = []
- green = []
- blue = []
-
- # Create the low-end values
- for i in range(0, blackpoint):
- red.append(black[0])
- green.append(black[1])
- blue.append(black[2])
-
- # Create the mapping (2-color)
- if mid is None:
-
- range_map = range(0, whitepoint - blackpoint)
-
- for i in range_map:
- red.append(black[0] + i * (white[0] - black[0]) // len(range_map))
- green.append(black[1] + i * (white[1] - black[1]) // len(range_map))
- blue.append(black[2] + i * (white[2] - black[2]) // len(range_map))
-
- # Create the mapping (3-color)
- else:
-
- range_map1 = range(0, midpoint - blackpoint)
- range_map2 = range(0, whitepoint - midpoint)
-
- for i in range_map1:
- red.append(black[0] + i * (mid[0] - black[0]) // len(range_map1))
- green.append(black[1] + i * (mid[1] - black[1]) // len(range_map1))
- blue.append(black[2] + i * (mid[2] - black[2]) // len(range_map1))
- for i in range_map2:
- red.append(mid[0] + i * (white[0] - mid[0]) // len(range_map2))
- green.append(mid[1] + i * (white[1] - mid[1]) // len(range_map2))
- blue.append(mid[2] + i * (white[2] - mid[2]) // len(range_map2))
-
- # Create the high-end values
- for i in range(0, 256 - whitepoint):
- red.append(white[0])
- green.append(white[1])
- blue.append(white[2])
-
- # Return converted image
- image = image.convert("RGB")
- return _lut(image, red + green + blue)
-
-
- def pad(image, size, method=Image.NEAREST, color=None, centering=(0.5, 0.5)):
- """
- Returns a sized and padded version of the image, expanded to fill the
- requested aspect ratio and size.
-
- :param image: The image to size and crop.
- :param size: The requested output size in pixels, given as a
- (width, height) tuple.
- :param method: What resampling method to use. Default is
- :py:attr:`PIL.Image.NEAREST`.
- :param color: The background color of the padded image.
- :param centering: Control the position of the original image within the
- padded version.
- (0.5, 0.5) will keep the image centered
- (0, 0) will keep the image aligned to the top left
- (1, 1) will keep the image aligned to the bottom
- right
- :return: An image.
- """
-
- im_ratio = image.width / image.height
- dest_ratio = float(size[0]) / size[1]
-
- if im_ratio == dest_ratio:
- out = image.resize(size, resample=method)
- else:
- out = Image.new(image.mode, size, color)
- if im_ratio > dest_ratio:
- new_height = int(image.height / image.width * size[0])
- if new_height != size[1]:
- image = image.resize((size[0], new_height), resample=method)
-
- y = int((size[1] - new_height) * max(0, min(centering[1], 1)))
- out.paste(image, (0, y))
- else:
- new_width = int(image.width / image.height * size[1])
- if new_width != size[0]:
- image = image.resize((new_width, size[1]), resample=method)
-
- x = int((size[0] - new_width) * max(0, min(centering[0], 1)))
- out.paste(image, (x, 0))
- return out
-
-
- def crop(image, border=0):
- """
- Remove border from image. The same amount of pixels are removed
- from all four sides. This function works on all image modes.
-
- .. seealso:: :py:meth:`~PIL.Image.Image.crop`
-
- :param image: The image to crop.
- :param border: The number of pixels to remove.
- :return: An image.
- """
- left, top, right, bottom = _border(border)
- return image.crop(
- (left, top, image.size[0]-right, image.size[1]-bottom)
- )
-
-
- def scale(image, factor, resample=Image.NEAREST):
- """
- Returns a rescaled image by a specific factor given in parameter.
- A factor greater than 1 expands the image, between 0 and 1 contracts the
- image.
-
- :param image: The image to rescale.
- :param factor: The expansion factor, as a float.
- :param resample: An optional resampling filter. Same values possible as
- in the PIL.Image.resize function.
- :returns: An :py:class:`~PIL.Image.Image` object.
- """
- if factor == 1:
- return image.copy()
- elif factor <= 0:
- raise ValueError("the factor must be greater than 0")
- else:
- size = (int(round(factor * image.width)),
- int(round(factor * image.height)))
- return image.resize(size, resample)
-
-
- def deform(image, deformer, resample=Image.BILINEAR):
- """
- Deform the image.
-
- :param image: The image to deform.
- :param deformer: A deformer object. Any object that implements a
- **getmesh** method can be used.
- :param resample: An optional resampling filter. Same values possible as
- in the PIL.Image.transform function.
- :return: An image.
- """
- return image.transform(
- image.size, Image.MESH, deformer.getmesh(image), resample
- )
-
-
- def equalize(image, mask=None):
- """
- Equalize the image histogram. This function applies a non-linear
- mapping to the input image, in order to create a uniform
- distribution of grayscale values in the output image.
-
- :param image: The image to equalize.
- :param mask: An optional mask. If given, only the pixels selected by
- the mask are included in the analysis.
- :return: An image.
- """
- if image.mode == "P":
- image = image.convert("RGB")
- h = image.histogram(mask)
- lut = []
- for b in range(0, len(h), 256):
- histo = [_f for _f in h[b:b+256] if _f]
- if len(histo) <= 1:
- lut.extend(list(range(256)))
- else:
- step = (functools.reduce(operator.add, histo) - histo[-1]) // 255
- if not step:
- lut.extend(list(range(256)))
- else:
- n = step // 2
- for i in range(256):
- lut.append(n // step)
- n = n + h[i+b]
- return _lut(image, lut)
-
-
- def expand(image, border=0, fill=0):
- """
- Add border to the image
-
- :param image: The image to expand.
- :param border: Border width, in pixels.
- :param fill: Pixel fill value (a color value). Default is 0 (black).
- :return: An image.
- """
- left, top, right, bottom = _border(border)
- width = left + image.size[0] + right
- height = top + image.size[1] + bottom
- out = Image.new(image.mode, (width, height), _color(fill, image.mode))
- out.paste(image, (left, top))
- return out
-
-
- def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)):
- """
- Returns a sized and cropped version of the image, cropped to the
- requested aspect ratio and size.
-
- This function was contributed by Kevin Cazabon.
-
- :param image: The image to size and crop.
- :param size: The requested output size in pixels, given as a
- (width, height) tuple.
- :param method: What resampling method to use. Default is
- :py:attr:`PIL.Image.NEAREST`.
- :param bleed: Remove a border around the outside of the image (from all
- four edges. The value is a decimal percentage (use 0.01 for
- one percent). The default value is 0 (no border).
- :param centering: Control the cropping position. Use (0.5, 0.5) for
- center cropping (e.g. if cropping the width, take 50% off
- of the left side, and therefore 50% off the right side).
- (0.0, 0.0) will crop from the top left corner (i.e. if
- cropping the width, take all of the crop off of the right
- side, and if cropping the height, take all of it off the
- bottom). (1.0, 0.0) will crop from the bottom left
- corner, etc. (i.e. if cropping the width, take all of the
- crop off the left side, and if cropping the height take
- none from the top, and therefore all off the bottom).
- :return: An image.
- """
-
- # by Kevin Cazabon, Feb 17/2000
- # kevin@cazabon.com
- # http://www.cazabon.com
-
- # ensure inputs are valid
- if not isinstance(centering, list):
- centering = [centering[0], centering[1]]
-
- if centering[0] > 1.0 or centering[0] < 0.0:
- centering[0] = 0.50
- if centering[1] > 1.0 or centering[1] < 0.0:
- centering[1] = 0.50
-
- if bleed > 0.49999 or bleed < 0.0:
- bleed = 0.0
-
- # calculate the area to use for resizing and cropping, subtracting
- # the 'bleed' around the edges
-
- # number of pixels to trim off on Top and Bottom, Left and Right
- bleedPixels = (
- int((float(bleed) * float(image.size[0])) + 0.5),
- int((float(bleed) * float(image.size[1])) + 0.5)
- )
-
- liveArea = (0, 0, image.size[0], image.size[1])
- if bleed > 0.0:
- liveArea = (
- bleedPixels[0], bleedPixels[1], image.size[0] - bleedPixels[0] - 1,
- image.size[1] - bleedPixels[1] - 1
- )
-
- liveSize = (liveArea[2] - liveArea[0], liveArea[3] - liveArea[1])
-
- # calculate the aspect ratio of the liveArea
- liveAreaAspectRatio = float(liveSize[0])/float(liveSize[1])
-
- # calculate the aspect ratio of the output image
- aspectRatio = float(size[0]) / float(size[1])
-
- # figure out if the sides or top/bottom will be cropped off
- if liveAreaAspectRatio >= aspectRatio:
- # liveArea is wider than what's needed, crop the sides
- cropWidth = int((aspectRatio * float(liveSize[1])) + 0.5)
- cropHeight = liveSize[1]
- else:
- # liveArea is taller than what's needed, crop the top and bottom
- cropWidth = liveSize[0]
- cropHeight = int((float(liveSize[0])/aspectRatio) + 0.5)
-
- # make the crop
- leftSide = int(liveArea[0] + (float(liveSize[0]-cropWidth) * centering[0]))
- if leftSide < 0:
- leftSide = 0
- topSide = int(liveArea[1] + (float(liveSize[1]-cropHeight) * centering[1]))
- if topSide < 0:
- topSide = 0
-
- out = image.crop(
- (leftSide, topSide, leftSide + cropWidth, topSide + cropHeight)
- )
-
- # resize the image and return it
- return out.resize(size, method)
-
-
- def flip(image):
- """
- Flip the image vertically (top to bottom).
-
- :param image: The image to flip.
- :return: An image.
- """
- return image.transpose(Image.FLIP_TOP_BOTTOM)
-
-
- def grayscale(image):
- """
- Convert the image to grayscale.
-
- :param image: The image to convert.
- :return: An image.
- """
- return image.convert("L")
-
-
- def invert(image):
- """
- Invert (negate) the image.
-
- :param image: The image to invert.
- :return: An image.
- """
- lut = []
- for i in range(256):
- lut.append(255-i)
- return _lut(image, lut)
-
-
- def mirror(image):
- """
- Flip image horizontally (left to right).
-
- :param image: The image to mirror.
- :return: An image.
- """
- return image.transpose(Image.FLIP_LEFT_RIGHT)
-
-
- def posterize(image, bits):
- """
- Reduce the number of bits for each color channel.
-
- :param image: The image to posterize.
- :param bits: The number of bits to keep for each channel (1-8).
- :return: An image.
- """
- lut = []
- mask = ~(2**(8-bits)-1)
- for i in range(256):
- lut.append(i & mask)
- return _lut(image, lut)
-
-
- def solarize(image, threshold=128):
- """
- Invert all pixel values above a threshold.
-
- :param image: The image to solarize.
- :param threshold: All pixels above this greyscale level are inverted.
- :return: An image.
- """
- lut = []
- for i in range(256):
- if i < threshold:
- lut.append(i)
- else:
- lut.append(255-i)
- return _lut(image, lut)
-
-
- # --------------------------------------------------------------------
- # PIL USM components, from Kevin Cazabon.
-
- def gaussian_blur(im, radius=None):
- """ PIL_usm.gblur(im, [radius])"""
-
- warnings.warn(
- 'PIL.ImageOps.gaussian_blur is deprecated. '
- 'Use PIL.ImageFilter.GaussianBlur instead. '
- 'This function will be removed in a future version.',
- DeprecationWarning
- )
-
- if radius is None:
- radius = 5.0
-
- im.load()
-
- return im.im.gaussian_blur(radius)
-
-
- def gblur(im, radius=None):
- """ PIL_usm.gblur(im, [radius])"""
-
- warnings.warn(
- 'PIL.ImageOps.gblur is deprecated. '
- 'Use PIL.ImageFilter.GaussianBlur instead. '
- 'This function will be removed in a future version.',
- DeprecationWarning
- )
-
- return gaussian_blur(im, radius)
-
-
- def unsharp_mask(im, radius=None, percent=None, threshold=None):
- """ PIL_usm.usm(im, [radius, percent, threshold])"""
-
- warnings.warn(
- 'PIL.ImageOps.unsharp_mask is deprecated. '
- 'Use PIL.ImageFilter.UnsharpMask instead. '
- 'This function will be removed in a future version.',
- DeprecationWarning
- )
-
- if radius is None:
- radius = 5.0
- if percent is None:
- percent = 150
- if threshold is None:
- threshold = 3
-
- im.load()
-
- return im.im.unsharp_mask(radius, percent, threshold)
-
-
- def usm(im, radius=None, percent=None, threshold=None):
- """ PIL_usm.usm(im, [radius, percent, threshold])"""
-
- warnings.warn(
- 'PIL.ImageOps.usm is deprecated. '
- 'Use PIL.ImageFilter.UnsharpMask instead. '
- 'This function will be removed in a future version.',
- DeprecationWarning
- )
-
- return unsharp_mask(im, radius, percent, threshold)
-
-
- def box_blur(image, radius):
- """
- Blur the image by setting each pixel to the average value of the pixels
- in a square box extending radius pixels in each direction.
- Supports float radius of arbitrary size. Uses an optimized implementation
- which runs in linear time relative to the size of the image
- for any radius value.
-
- :param image: The image to blur.
- :param radius: Size of the box in one direction. Radius 0 does not blur,
- returns an identical image. Radius 1 takes 1 pixel
- in each direction, i.e. 9 pixels in total.
- :return: An image.
- """
- warnings.warn(
- 'PIL.ImageOps.box_blur is deprecated. '
- 'Use PIL.ImageFilter.BoxBlur instead. '
- 'This function will be removed in a future version.',
- DeprecationWarning
- )
-
- image.load()
-
- return image._new(image.im.box_blur(radius))
|