632 lines
24 KiB
Python
632 lines
24 KiB
Python
|
"""Transformers for missing value imputation"""
|
||
|
# Authors: Nicolas Tresegnie <nicolas.tresegnie@gmail.com>
|
||
|
# Sergey Feldman <sergeyfeldman@gmail.com>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import warnings
|
||
|
import numbers
|
||
|
|
||
|
import numpy as np
|
||
|
import numpy.ma as ma
|
||
|
from scipy import sparse
|
||
|
from scipy import stats
|
||
|
|
||
|
from .base import BaseEstimator, TransformerMixin
|
||
|
from .utils import check_array
|
||
|
from .utils.sparsefuncs import _get_median
|
||
|
from .utils.validation import check_is_fitted
|
||
|
from .utils.validation import FLOAT_DTYPES
|
||
|
from .utils.fixes import _object_dtype_isnan
|
||
|
from .utils import is_scalar_nan
|
||
|
|
||
|
from .externals import six
|
||
|
|
||
|
zip = six.moves.zip
|
||
|
map = six.moves.map
|
||
|
|
||
|
__all__ = [
|
||
|
'MissingIndicator',
|
||
|
'SimpleImputer',
|
||
|
]
|
||
|
|
||
|
|
||
|
def _check_inputs_dtype(X, missing_values):
|
||
|
if (X.dtype.kind in ("f", "i", "u") and
|
||
|
not isinstance(missing_values, numbers.Real)):
|
||
|
raise ValueError("'X' and 'missing_values' types are expected to be"
|
||
|
" both numerical. Got X.dtype={} and "
|
||
|
" type(missing_values)={}."
|
||
|
.format(X.dtype, type(missing_values)))
|
||
|
|
||
|
|
||
|
def _get_mask(X, value_to_mask):
|
||
|
"""Compute the boolean mask X == missing_values."""
|
||
|
if is_scalar_nan(value_to_mask):
|
||
|
if X.dtype.kind == "f":
|
||
|
return np.isnan(X)
|
||
|
elif X.dtype.kind in ("i", "u"):
|
||
|
# can't have NaNs in integer array.
|
||
|
return np.zeros(X.shape, dtype=bool)
|
||
|
else:
|
||
|
# np.isnan does not work on object dtypes.
|
||
|
return _object_dtype_isnan(X)
|
||
|
else:
|
||
|
# X == value_to_mask with object dytpes does not always perform
|
||
|
# element-wise for old versions of numpy
|
||
|
return np.equal(X, value_to_mask)
|
||
|
|
||
|
|
||
|
def _most_frequent(array, extra_value, n_repeat):
|
||
|
"""Compute the most frequent value in a 1d array extended with
|
||
|
[extra_value] * n_repeat, where extra_value is assumed to be not part
|
||
|
of the array."""
|
||
|
# Compute the most frequent value in array only
|
||
|
if array.size > 0:
|
||
|
with warnings.catch_warnings():
|
||
|
# stats.mode raises a warning when input array contains objects due
|
||
|
# to incapacity to detect NaNs. Irrelevant here since input array
|
||
|
# has already been NaN-masked.
|
||
|
warnings.simplefilter("ignore", RuntimeWarning)
|
||
|
mode = stats.mode(array)
|
||
|
|
||
|
most_frequent_value = mode[0][0]
|
||
|
most_frequent_count = mode[1][0]
|
||
|
else:
|
||
|
most_frequent_value = 0
|
||
|
most_frequent_count = 0
|
||
|
|
||
|
# Compare to array + [extra_value] * n_repeat
|
||
|
if most_frequent_count == 0 and n_repeat == 0:
|
||
|
return np.nan
|
||
|
elif most_frequent_count < n_repeat:
|
||
|
return extra_value
|
||
|
elif most_frequent_count > n_repeat:
|
||
|
return most_frequent_value
|
||
|
elif most_frequent_count == n_repeat:
|
||
|
# Ties the breaks. Copy the behaviour of scipy.stats.mode
|
||
|
if most_frequent_value < extra_value:
|
||
|
return most_frequent_value
|
||
|
else:
|
||
|
return extra_value
|
||
|
|
||
|
|
||
|
class SimpleImputer(BaseEstimator, TransformerMixin):
|
||
|
"""Imputation transformer for completing missing values.
|
||
|
|
||
|
Read more in the :ref:`User Guide <impute>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
missing_values : number, string, np.nan (default) or None
|
||
|
The placeholder for the missing values. All occurrences of
|
||
|
`missing_values` will be imputed.
|
||
|
|
||
|
strategy : string, optional (default="mean")
|
||
|
The imputation strategy.
|
||
|
|
||
|
- If "mean", then replace missing values using the mean along
|
||
|
each column. Can only be used with numeric data.
|
||
|
- If "median", then replace missing values using the median along
|
||
|
each column. Can only be used with numeric data.
|
||
|
- If "most_frequent", then replace missing using the most frequent
|
||
|
value along each column. Can be used with strings or numeric data.
|
||
|
- If "constant", then replace missing values with fill_value. Can be
|
||
|
used with strings or numeric data.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
strategy="constant" for fixed value imputation.
|
||
|
|
||
|
fill_value : string or numerical value, optional (default=None)
|
||
|
When strategy == "constant", fill_value is used to replace all
|
||
|
occurrences of missing_values.
|
||
|
If left to the default, fill_value will be 0 when imputing numerical
|
||
|
data and "missing_value" for strings or object data types.
|
||
|
|
||
|
verbose : integer, optional (default=0)
|
||
|
Controls the verbosity of the imputer.
|
||
|
|
||
|
copy : boolean, optional (default=True)
|
||
|
If True, a copy of X will be created. If False, imputation will
|
||
|
be done in-place whenever possible. Note that, in the following cases,
|
||
|
a new copy will always be made, even if `copy=False`:
|
||
|
|
||
|
- If X is not an array of floating values;
|
||
|
- If X is encoded as a CSR matrix.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
statistics_ : array of shape (n_features,)
|
||
|
The imputation fill value for each feature.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.impute import SimpleImputer
|
||
|
>>> imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||
|
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
|
||
|
... # doctest: +NORMALIZE_WHITESPACE
|
||
|
SimpleImputer(copy=True, fill_value=None, missing_values=nan,
|
||
|
strategy='mean', verbose=0)
|
||
|
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
|
||
|
>>> print(imp_mean.transform(X))
|
||
|
... # doctest: +NORMALIZE_WHITESPACE
|
||
|
[[ 7. 2. 3. ]
|
||
|
[ 4. 3.5 6. ]
|
||
|
[10. 3.5 9. ]]
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Columns which only contained missing values at `fit` are discarded upon
|
||
|
`transform` if strategy is not "constant".
|
||
|
|
||
|
"""
|
||
|
def __init__(self, missing_values=np.nan, strategy="mean",
|
||
|
fill_value=None, verbose=0, copy=True):
|
||
|
self.missing_values = missing_values
|
||
|
self.strategy = strategy
|
||
|
self.fill_value = fill_value
|
||
|
self.verbose = verbose
|
||
|
self.copy = copy
|
||
|
|
||
|
def _validate_input(self, X):
|
||
|
allowed_strategies = ["mean", "median", "most_frequent", "constant"]
|
||
|
if self.strategy not in allowed_strategies:
|
||
|
raise ValueError("Can only use these strategies: {0} "
|
||
|
" got strategy={1}".format(allowed_strategies,
|
||
|
self.strategy))
|
||
|
|
||
|
if self.strategy in ("most_frequent", "constant"):
|
||
|
dtype = None
|
||
|
else:
|
||
|
dtype = FLOAT_DTYPES
|
||
|
|
||
|
if not is_scalar_nan(self.missing_values):
|
||
|
force_all_finite = True
|
||
|
else:
|
||
|
force_all_finite = "allow-nan"
|
||
|
|
||
|
try:
|
||
|
X = check_array(X, accept_sparse='csc', dtype=dtype,
|
||
|
force_all_finite=force_all_finite, copy=self.copy)
|
||
|
except ValueError as ve:
|
||
|
if "could not convert" in str(ve):
|
||
|
raise ValueError("Cannot use {0} strategy with non-numeric "
|
||
|
"data. Received datatype :{1}."
|
||
|
"".format(self.strategy, X.dtype.kind))
|
||
|
else:
|
||
|
raise ve
|
||
|
|
||
|
_check_inputs_dtype(X, self.missing_values)
|
||
|
if X.dtype.kind not in ("i", "u", "f", "O"):
|
||
|
raise ValueError("SimpleImputer does not support data with dtype "
|
||
|
"{0}. Please provide either a numeric array (with"
|
||
|
" a floating point or integer dtype) or "
|
||
|
"categorical data represented either as an array "
|
||
|
"with integer dtype or an array of string values "
|
||
|
"with an object dtype.".format(X.dtype))
|
||
|
|
||
|
return X
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit the imputer on X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
Input data, where ``n_samples`` is the number of samples and
|
||
|
``n_features`` is the number of features.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : SimpleImputer
|
||
|
"""
|
||
|
X = self._validate_input(X)
|
||
|
|
||
|
# default fill_value is 0 for numerical input and "missing_value"
|
||
|
# otherwise
|
||
|
if self.fill_value is None:
|
||
|
if X.dtype.kind in ("i", "u", "f"):
|
||
|
fill_value = 0
|
||
|
else:
|
||
|
fill_value = "missing_value"
|
||
|
else:
|
||
|
fill_value = self.fill_value
|
||
|
|
||
|
# fill_value should be numerical in case of numerical input
|
||
|
if (self.strategy == "constant" and
|
||
|
X.dtype.kind in ("i", "u", "f") and
|
||
|
not isinstance(fill_value, numbers.Real)):
|
||
|
raise ValueError("'fill_value'={0} is invalid. Expected a "
|
||
|
"numerical value when imputing numerical "
|
||
|
"data".format(fill_value))
|
||
|
|
||
|
if sparse.issparse(X):
|
||
|
# missing_values = 0 not allowed with sparse data as it would
|
||
|
# force densification
|
||
|
if self.missing_values == 0:
|
||
|
raise ValueError("Imputation not possible when missing_values "
|
||
|
"== 0 and input is sparse. Provide a dense "
|
||
|
"array instead.")
|
||
|
else:
|
||
|
self.statistics_ = self._sparse_fit(X,
|
||
|
self.strategy,
|
||
|
self.missing_values,
|
||
|
fill_value)
|
||
|
else:
|
||
|
self.statistics_ = self._dense_fit(X,
|
||
|
self.strategy,
|
||
|
self.missing_values,
|
||
|
fill_value)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def _sparse_fit(self, X, strategy, missing_values, fill_value):
|
||
|
"""Fit the transformer on sparse data."""
|
||
|
mask_data = _get_mask(X.data, missing_values)
|
||
|
n_implicit_zeros = X.shape[0] - np.diff(X.indptr)
|
||
|
|
||
|
statistics = np.empty(X.shape[1])
|
||
|
|
||
|
if strategy == "constant":
|
||
|
# for constant strategy, self.statistcs_ is used to store
|
||
|
# fill_value in each column
|
||
|
statistics.fill(fill_value)
|
||
|
|
||
|
else:
|
||
|
for i in range(X.shape[1]):
|
||
|
column = X.data[X.indptr[i]:X.indptr[i + 1]]
|
||
|
mask_column = mask_data[X.indptr[i]:X.indptr[i + 1]]
|
||
|
column = column[~mask_column]
|
||
|
|
||
|
# combine explicit and implicit zeros
|
||
|
mask_zeros = _get_mask(column, 0)
|
||
|
column = column[~mask_zeros]
|
||
|
n_explicit_zeros = mask_zeros.sum()
|
||
|
n_zeros = n_implicit_zeros[i] + n_explicit_zeros
|
||
|
|
||
|
if strategy == "mean":
|
||
|
s = column.size + n_zeros
|
||
|
statistics[i] = np.nan if s == 0 else column.sum() / s
|
||
|
|
||
|
elif strategy == "median":
|
||
|
statistics[i] = _get_median(column,
|
||
|
n_zeros)
|
||
|
|
||
|
elif strategy == "most_frequent":
|
||
|
statistics[i] = _most_frequent(column,
|
||
|
0,
|
||
|
n_zeros)
|
||
|
return statistics
|
||
|
|
||
|
def _dense_fit(self, X, strategy, missing_values, fill_value):
|
||
|
"""Fit the transformer on dense data."""
|
||
|
mask = _get_mask(X, missing_values)
|
||
|
masked_X = ma.masked_array(X, mask=mask)
|
||
|
|
||
|
# Mean
|
||
|
if strategy == "mean":
|
||
|
mean_masked = np.ma.mean(masked_X, axis=0)
|
||
|
# Avoid the warning "Warning: converting a masked element to nan."
|
||
|
mean = np.ma.getdata(mean_masked)
|
||
|
mean[np.ma.getmask(mean_masked)] = np.nan
|
||
|
|
||
|
return mean
|
||
|
|
||
|
# Median
|
||
|
elif strategy == "median":
|
||
|
median_masked = np.ma.median(masked_X, axis=0)
|
||
|
# Avoid the warning "Warning: converting a masked element to nan."
|
||
|
median = np.ma.getdata(median_masked)
|
||
|
median[np.ma.getmaskarray(median_masked)] = np.nan
|
||
|
|
||
|
return median
|
||
|
|
||
|
# Most frequent
|
||
|
elif strategy == "most_frequent":
|
||
|
# scipy.stats.mstats.mode cannot be used because it will no work
|
||
|
# properly if the first element is masked and if its frequency
|
||
|
# is equal to the frequency of the most frequent valid element
|
||
|
# See https://github.com/scipy/scipy/issues/2636
|
||
|
|
||
|
# To be able access the elements by columns
|
||
|
X = X.transpose()
|
||
|
mask = mask.transpose()
|
||
|
|
||
|
if X.dtype.kind == "O":
|
||
|
most_frequent = np.empty(X.shape[0], dtype=object)
|
||
|
else:
|
||
|
most_frequent = np.empty(X.shape[0])
|
||
|
|
||
|
for i, (row, row_mask) in enumerate(zip(X[:], mask[:])):
|
||
|
row_mask = np.logical_not(row_mask).astype(np.bool)
|
||
|
row = row[row_mask]
|
||
|
most_frequent[i] = _most_frequent(row, np.nan, 0)
|
||
|
|
||
|
return most_frequent
|
||
|
|
||
|
# Constant
|
||
|
elif strategy == "constant":
|
||
|
# for constant strategy, self.statistcs_ is used to store
|
||
|
# fill_value in each column
|
||
|
return np.full(X.shape[1], fill_value, dtype=X.dtype)
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""Impute all missing values in X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
The input data to complete.
|
||
|
"""
|
||
|
check_is_fitted(self, 'statistics_')
|
||
|
|
||
|
X = self._validate_input(X)
|
||
|
|
||
|
statistics = self.statistics_
|
||
|
|
||
|
if X.shape[1] != statistics.shape[0]:
|
||
|
raise ValueError("X has %d features per sample, expected %d"
|
||
|
% (X.shape[1], self.statistics_.shape[0]))
|
||
|
|
||
|
# Delete the invalid columns if strategy is not constant
|
||
|
if self.strategy == "constant":
|
||
|
valid_statistics = statistics
|
||
|
else:
|
||
|
# same as np.isnan but also works for object dtypes
|
||
|
invalid_mask = _get_mask(statistics, np.nan)
|
||
|
valid_mask = np.logical_not(invalid_mask)
|
||
|
valid_statistics = statistics[valid_mask]
|
||
|
valid_statistics_indexes = np.flatnonzero(valid_mask)
|
||
|
|
||
|
if invalid_mask.any():
|
||
|
missing = np.arange(X.shape[1])[invalid_mask]
|
||
|
if self.verbose:
|
||
|
warnings.warn("Deleting features without "
|
||
|
"observed values: %s" % missing)
|
||
|
X = X[:, valid_statistics_indexes]
|
||
|
|
||
|
# Do actual imputation
|
||
|
if sparse.issparse(X):
|
||
|
if self.missing_values == 0:
|
||
|
raise ValueError("Imputation not possible when missing_values "
|
||
|
"== 0 and input is sparse. Provide a dense "
|
||
|
"array instead.")
|
||
|
else:
|
||
|
mask = _get_mask(X.data, self.missing_values)
|
||
|
indexes = np.repeat(np.arange(len(X.indptr) - 1, dtype=np.int),
|
||
|
np.diff(X.indptr))[mask]
|
||
|
|
||
|
X.data[mask] = valid_statistics[indexes].astype(X.dtype,
|
||
|
copy=False)
|
||
|
else:
|
||
|
mask = _get_mask(X, self.missing_values)
|
||
|
n_missing = np.sum(mask, axis=0)
|
||
|
values = np.repeat(valid_statistics, n_missing)
|
||
|
coordinates = np.where(mask.transpose())[::-1]
|
||
|
|
||
|
X[coordinates] = values
|
||
|
|
||
|
return X
|
||
|
|
||
|
|
||
|
class MissingIndicator(BaseEstimator, TransformerMixin):
|
||
|
"""Binary indicators for missing values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
missing_values : number, string, np.nan (default) or None
|
||
|
The placeholder for the missing values. All occurrences of
|
||
|
`missing_values` will be imputed.
|
||
|
|
||
|
features : str, optional
|
||
|
Whether the imputer mask should represent all or a subset of
|
||
|
features.
|
||
|
|
||
|
- If "missing-only" (default), the imputer mask will only represent
|
||
|
features containing missing values during fit time.
|
||
|
- If "all", the imputer mask will represent all features.
|
||
|
|
||
|
sparse : boolean or "auto", optional
|
||
|
Whether the imputer mask format should be sparse or dense.
|
||
|
|
||
|
- If "auto" (default), the imputer mask will be of same type as
|
||
|
input.
|
||
|
- If True, the imputer mask will be a sparse matrix.
|
||
|
- If False, the imputer mask will be a numpy array.
|
||
|
|
||
|
error_on_new : boolean, optional
|
||
|
If True (default), transform will raise an error when there are
|
||
|
features with missing values in transform that have no missing values
|
||
|
in fit This is applicable only when ``features="missing-only"``.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
features_ : ndarray, shape (n_missing_features,) or (n_features,)
|
||
|
The features indices which will be returned when calling ``transform``.
|
||
|
They are computed during ``fit``. For ``features='all'``, it is
|
||
|
to ``range(n_features)``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.impute import MissingIndicator
|
||
|
>>> X1 = np.array([[np.nan, 1, 3],
|
||
|
... [4, 0, np.nan],
|
||
|
... [8, 1, 0]])
|
||
|
>>> X2 = np.array([[5, 1, np.nan],
|
||
|
... [np.nan, 2, 3],
|
||
|
... [2, 4, 0]])
|
||
|
>>> indicator = MissingIndicator()
|
||
|
>>> indicator.fit(X1)
|
||
|
MissingIndicator(error_on_new=True, features='missing-only',
|
||
|
missing_values=nan, sparse='auto')
|
||
|
>>> X2_tr = indicator.transform(X2)
|
||
|
>>> X2_tr
|
||
|
array([[False, True],
|
||
|
[ True, False],
|
||
|
[False, False]])
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, missing_values=np.nan, features="missing-only",
|
||
|
sparse="auto", error_on_new=True):
|
||
|
self.missing_values = missing_values
|
||
|
self.features = features
|
||
|
self.sparse = sparse
|
||
|
self.error_on_new = error_on_new
|
||
|
|
||
|
def _get_missing_features_info(self, X):
|
||
|
"""Compute the imputer mask and the indices of the features
|
||
|
containing missing values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {ndarray or sparse matrix}, shape (n_samples, n_features)
|
||
|
The input data with missing values. Note that ``X`` has been
|
||
|
checked in ``fit`` and ``transform`` before to call this function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
imputer_mask : {ndarray or sparse matrix}, shape \
|
||
|
(n_samples, n_features) or (n_samples, n_features_with_missing)
|
||
|
The imputer mask of the original data.
|
||
|
|
||
|
features_with_missing : ndarray, shape (n_features_with_missing)
|
||
|
The features containing missing values.
|
||
|
|
||
|
"""
|
||
|
if sparse.issparse(X) and self.missing_values != 0:
|
||
|
mask = _get_mask(X.data, self.missing_values)
|
||
|
|
||
|
# The imputer mask will be constructed with the same sparse format
|
||
|
# as X.
|
||
|
sparse_constructor = (sparse.csr_matrix if X.format == 'csr'
|
||
|
else sparse.csc_matrix)
|
||
|
imputer_mask = sparse_constructor(
|
||
|
(mask, X.indices.copy(), X.indptr.copy()),
|
||
|
shape=X.shape, dtype=bool)
|
||
|
|
||
|
missing_values_mask = imputer_mask.copy()
|
||
|
missing_values_mask.eliminate_zeros()
|
||
|
features_with_missing = (
|
||
|
np.flatnonzero(np.diff(missing_values_mask.indptr))
|
||
|
if missing_values_mask.format == 'csc'
|
||
|
else np.unique(missing_values_mask.indices))
|
||
|
|
||
|
if self.sparse is False:
|
||
|
imputer_mask = imputer_mask.toarray()
|
||
|
elif imputer_mask.format == 'csr':
|
||
|
imputer_mask = imputer_mask.tocsc()
|
||
|
else:
|
||
|
if sparse.issparse(X):
|
||
|
# case of sparse matrix with 0 as missing values. Implicit and
|
||
|
# explicit zeros are considered as missing values.
|
||
|
X = X.toarray()
|
||
|
imputer_mask = _get_mask(X, self.missing_values)
|
||
|
features_with_missing = np.flatnonzero(imputer_mask.sum(axis=0))
|
||
|
|
||
|
if self.sparse is True:
|
||
|
imputer_mask = sparse.csc_matrix(imputer_mask)
|
||
|
|
||
|
return imputer_mask, features_with_missing
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit the transformer on X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
Input data, where ``n_samples`` is the number of samples and
|
||
|
``n_features`` is the number of features.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns self.
|
||
|
"""
|
||
|
if not is_scalar_nan(self.missing_values):
|
||
|
force_all_finite = True
|
||
|
else:
|
||
|
force_all_finite = "allow-nan"
|
||
|
X = check_array(X, accept_sparse=('csc', 'csr'),
|
||
|
force_all_finite=force_all_finite)
|
||
|
_check_inputs_dtype(X, self.missing_values)
|
||
|
|
||
|
self._n_features = X.shape[1]
|
||
|
|
||
|
if self.features not in ('missing-only', 'all'):
|
||
|
raise ValueError("'features' has to be either 'missing-only' or "
|
||
|
"'all'. Got {} instead.".format(self.features))
|
||
|
|
||
|
if not ((isinstance(self.sparse, six.string_types) and
|
||
|
self.sparse == "auto") or isinstance(self.sparse, bool)):
|
||
|
raise ValueError("'sparse' has to be a boolean or 'auto'. "
|
||
|
"Got {!r} instead.".format(self.sparse))
|
||
|
|
||
|
self.features_ = (self._get_missing_features_info(X)[1]
|
||
|
if self.features == 'missing-only'
|
||
|
else np.arange(self._n_features))
|
||
|
|
||
|
return self
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""Generate missing values indicator for X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
The input data to complete.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Xt : {ndarray or sparse matrix}, shape (n_samples, n_features)
|
||
|
The missing indicator for input data. The data type of ``Xt``
|
||
|
will be boolean.
|
||
|
|
||
|
"""
|
||
|
check_is_fitted(self, "features_")
|
||
|
|
||
|
if not is_scalar_nan(self.missing_values):
|
||
|
force_all_finite = True
|
||
|
else:
|
||
|
force_all_finite = "allow-nan"
|
||
|
X = check_array(X, accept_sparse=('csc', 'csr'),
|
||
|
force_all_finite=force_all_finite)
|
||
|
_check_inputs_dtype(X, self.missing_values)
|
||
|
|
||
|
if X.shape[1] != self._n_features:
|
||
|
raise ValueError("X has a different number of features "
|
||
|
"than during fitting.")
|
||
|
|
||
|
imputer_mask, features = self._get_missing_features_info(X)
|
||
|
|
||
|
if self.features == "missing-only":
|
||
|
features_diff_fit_trans = np.setdiff1d(features, self.features_)
|
||
|
if (self.error_on_new and features_diff_fit_trans.size > 0):
|
||
|
raise ValueError("The features {} have missing values "
|
||
|
"in transform but have no missing values "
|
||
|
"in fit.".format(features_diff_fit_trans))
|
||
|
|
||
|
if (self.features_.size > 0 and
|
||
|
self.features_.size < self._n_features):
|
||
|
imputer_mask = imputer_mask[:, self.features_]
|
||
|
|
||
|
return imputer_mask
|
||
|
|
||
|
def fit_transform(self, X, y=None):
|
||
|
"""Generate missing values indicator for X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
The input data to complete.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Xt : {ndarray or sparse matrix}, shape (n_samples, n_features)
|
||
|
The missing indicator for input data. The data type of ``Xt``
|
||
|
will be boolean.
|
||
|
|
||
|
"""
|
||
|
return self.fit(X, y).transform(X)
|