|
|
- import os
- import sys
- import functools
- import operator
- import weakref
- import inspect
-
- PY2 = sys.version_info[0] == 2
- PY3 = sys.version_info[0] == 3
-
- if PY3:
- string_types = str,
- else:
- string_types = basestring,
-
- def with_metaclass(meta, *bases):
- """Create a base class with a metaclass."""
- return meta("NewBase", bases, {})
-
- class _ObjectProxyMethods(object):
-
- # We use properties to override the values of __module__ and
- # __doc__. If we add these in ObjectProxy, the derived class
- # __dict__ will still be setup to have string variants of these
- # attributes and the rules of descriptors means that they appear to
- # take precedence over the properties in the base class. To avoid
- # that, we copy the properties into the derived class type itself
- # via a meta class. In that way the properties will always take
- # precedence.
-
- @property
- def __module__(self):
- return self.__wrapped__.__module__
-
- @__module__.setter
- def __module__(self, value):
- self.__wrapped__.__module__ = value
-
- @property
- def __doc__(self):
- return self.__wrapped__.__doc__
-
- @__doc__.setter
- def __doc__(self, value):
- self.__wrapped__.__doc__ = value
-
- # We similar use a property for __dict__. We need __dict__ to be
- # explicit to ensure that vars() works as expected.
-
- @property
- def __dict__(self):
- return self.__wrapped__.__dict__
-
- # Need to also propagate the special __weakref__ attribute for case
- # where decorating classes which will define this. If do not define
- # it and use a function like inspect.getmembers() on a decorator
- # class it will fail. This can't be in the derived classes.
-
- @property
- def __weakref__(self):
- return self.__wrapped__.__weakref__
-
- class _ObjectProxyMetaType(type):
- def __new__(cls, name, bases, dictionary):
- # Copy our special properties into the class so that they
- # always take precedence over attributes of the same name added
- # during construction of a derived class. This is to save
- # duplicating the implementation for them in all derived classes.
-
- dictionary.update(vars(_ObjectProxyMethods))
-
- return type.__new__(cls, name, bases, dictionary)
-
- class ObjectProxy(with_metaclass(_ObjectProxyMetaType)):
-
- __slots__ = '__wrapped__'
-
- def __init__(self, wrapped):
- object.__setattr__(self, '__wrapped__', wrapped)
-
- # Python 3.2+ has the __qualname__ attribute, but it does not
- # allow it to be overridden using a property and it must instead
- # be an actual string object instead.
-
- try:
- object.__setattr__(self, '__qualname__', wrapped.__qualname__)
- except AttributeError:
- pass
-
- @property
- def __name__(self):
- return self.__wrapped__.__name__
-
- @__name__.setter
- def __name__(self, value):
- self.__wrapped__.__name__ = value
-
- @property
- def __class__(self):
- return self.__wrapped__.__class__
-
- @__class__.setter
- def __class__(self, value):
- self.__wrapped__.__class__ = value
-
- @property
- def __annotations__(self):
- return self.__wrapped__.__anotations__
-
- @__annotations__.setter
- def __annotations__(self, value):
- self.__wrapped__.__annotations__ = value
-
- def __dir__(self):
- return dir(self.__wrapped__)
-
- def __str__(self):
- return str(self.__wrapped__)
-
- if PY3:
- def __bytes__(self):
- return bytes(self.__wrapped__)
-
- def __repr__(self):
- return '<%s at 0x%x for %s at 0x%x>' % (
- type(self).__name__, id(self),
- type(self.__wrapped__).__name__,
- id(self.__wrapped__))
-
- def __reversed__(self):
- return reversed(self.__wrapped__)
-
- if PY3:
- def __round__(self):
- return round(self.__wrapped__)
-
- def __lt__(self, other):
- return self.__wrapped__ < other
-
- def __le__(self, other):
- return self.__wrapped__ <= other
-
- def __eq__(self, other):
- return self.__wrapped__ == other
-
- def __ne__(self, other):
- return self.__wrapped__ != other
-
- def __gt__(self, other):
- return self.__wrapped__ > other
-
- def __ge__(self, other):
- return self.__wrapped__ >= other
-
- def __hash__(self):
- return hash(self.__wrapped__)
-
- def __nonzero__(self):
- return bool(self.__wrapped__)
-
- def __bool__(self):
- return bool(self.__wrapped__)
-
- def __setattr__(self, name, value):
- if name.startswith('_self_'):
- object.__setattr__(self, name, value)
-
- elif name == '__wrapped__':
- object.__setattr__(self, name, value)
- try:
- object.__delattr__(self, '__qualname__')
- except AttributeError:
- pass
- try:
- object.__setattr__(self, '__qualname__', value.__qualname__)
- except AttributeError:
- pass
-
- elif name == '__qualname__':
- setattr(self.__wrapped__, name, value)
- object.__setattr__(self, name, value)
-
- elif hasattr(type(self), name):
- object.__setattr__(self, name, value)
-
- else:
- setattr(self.__wrapped__, name, value)
-
- def __getattr__(self, name):
- # If we are being to lookup '__wrapped__' then the
- # '__init__()' method cannot have been called.
-
- if name == '__wrapped__':
- raise ValueError('wrapper has not been initialised')
-
- return getattr(self.__wrapped__, name)
-
- def __delattr__(self, name):
- if name.startswith('_self_'):
- object.__delattr__(self, name)
-
- elif name == '__wrapped__':
- raise TypeError('__wrapped__ must be an object')
-
- elif name == '__qualname__':
- object.__delattr__(self, name)
- delattr(self.__wrapped__, name)
-
- elif hasattr(type(self), name):
- object.__delattr__(self, name)
-
- else:
- delattr(self.__wrapped__, name)
-
- def __add__(self, other):
- return self.__wrapped__ + other
-
- def __sub__(self, other):
- return self.__wrapped__ - other
-
- def __mul__(self, other):
- return self.__wrapped__ * other
-
- def __div__(self, other):
- return operator.div(self.__wrapped__, other)
-
- def __truediv__(self, other):
- return operator.truediv(self.__wrapped__, other)
-
- def __floordiv__(self, other):
- return self.__wrapped__ // other
-
- def __mod__(self, other):
- return self.__wrapped__ % other
-
- def __divmod__(self, other):
- return divmod(self.__wrapped__, other)
-
- def __pow__(self, other, *args):
- return pow(self.__wrapped__, other, *args)
-
- def __lshift__(self, other):
- return self.__wrapped__ << other
-
- def __rshift__(self, other):
- return self.__wrapped__ >> other
-
- def __and__(self, other):
- return self.__wrapped__ & other
-
- def __xor__(self, other):
- return self.__wrapped__ ^ other
-
- def __or__(self, other):
- return self.__wrapped__ | other
-
- def __radd__(self, other):
- return other + self.__wrapped__
-
- def __rsub__(self, other):
- return other - self.__wrapped__
-
- def __rmul__(self, other):
- return other * self.__wrapped__
-
- def __rdiv__(self, other):
- return operator.div(other, self.__wrapped__)
-
- def __rtruediv__(self, other):
- return operator.truediv(other, self.__wrapped__)
-
- def __rfloordiv__(self, other):
- return other // self.__wrapped__
-
- def __rmod__(self, other):
- return other % self.__wrapped__
-
- def __rdivmod__(self, other):
- return divmod(other, self.__wrapped__)
-
- def __rpow__(self, other, *args):
- return pow(other, self.__wrapped__, *args)
-
- def __rlshift__(self, other):
- return other << self.__wrapped__
-
- def __rrshift__(self, other):
- return other >> self.__wrapped__
-
- def __rand__(self, other):
- return other & self.__wrapped__
-
- def __rxor__(self, other):
- return other ^ self.__wrapped__
-
- def __ror__(self, other):
- return other | self.__wrapped__
-
- def __iadd__(self, other):
- self.__wrapped__ += other
- return self
-
- def __isub__(self, other):
- self.__wrapped__ -= other
- return self
-
- def __imul__(self, other):
- self.__wrapped__ *= other
- return self
-
- def __idiv__(self, other):
- self.__wrapped__ = operator.idiv(self.__wrapped__, other)
- return self
-
- def __itruediv__(self, other):
- self.__wrapped__ = operator.itruediv(self.__wrapped__, other)
- return self
-
- def __ifloordiv__(self, other):
- self.__wrapped__ //= other
- return self
-
- def __imod__(self, other):
- self.__wrapped__ %= other
- return self
-
- def __ipow__(self, other):
- self.__wrapped__ **= other
- return self
-
- def __ilshift__(self, other):
- self.__wrapped__ <<= other
- return self
-
- def __irshift__(self, other):
- self.__wrapped__ >>= other
- return self
-
- def __iand__(self, other):
- self.__wrapped__ &= other
- return self
-
- def __ixor__(self, other):
- self.__wrapped__ ^= other
- return self
-
- def __ior__(self, other):
- self.__wrapped__ |= other
- return self
-
- def __neg__(self):
- return -self.__wrapped__
-
- def __pos__(self):
- return +self.__wrapped__
-
- def __abs__(self):
- return abs(self.__wrapped__)
-
- def __invert__(self):
- return ~self.__wrapped__
-
- def __int__(self):
- return int(self.__wrapped__)
-
- def __long__(self):
- return long(self.__wrapped__)
-
- def __float__(self):
- return float(self.__wrapped__)
-
- def __oct__(self):
- return oct(self.__wrapped__)
-
- def __hex__(self):
- return hex(self.__wrapped__)
-
- def __index__(self):
- return operator.index(self.__wrapped__)
-
- def __len__(self):
- return len(self.__wrapped__)
-
- def __contains__(self, value):
- return value in self.__wrapped__
-
- def __getitem__(self, key):
- return self.__wrapped__[key]
-
- def __setitem__(self, key, value):
- self.__wrapped__[key] = value
-
- def __delitem__(self, key):
- del self.__wrapped__[key]
-
- def __getslice__(self, i, j):
- return self.__wrapped__[i:j]
-
- def __setslice__(self, i, j, value):
- self.__wrapped__[i:j] = value
-
- def __delslice__(self, i, j):
- del self.__wrapped__[i:j]
-
- def __enter__(self):
- return self.__wrapped__.__enter__()
-
- def __exit__(self, *args, **kwargs):
- return self.__wrapped__.__exit__(*args, **kwargs)
-
- def __iter__(self):
- return iter(self.__wrapped__)
-
- class CallableObjectProxy(ObjectProxy):
-
- def __call__(self, *args, **kwargs):
- return self.__wrapped__(*args, **kwargs)
-
- class _FunctionWrapperBase(ObjectProxy):
-
- __slots__ = ('_self_instance', '_self_wrapper', '_self_enabled',
- '_self_binding', '_self_parent')
-
- def __init__(self, wrapped, instance, wrapper, enabled=None,
- binding='function', parent=None):
-
- super(_FunctionWrapperBase, self).__init__(wrapped)
-
- object.__setattr__(self, '_self_instance', instance)
- object.__setattr__(self, '_self_wrapper', wrapper)
- object.__setattr__(self, '_self_enabled', enabled)
- object.__setattr__(self, '_self_binding', binding)
- object.__setattr__(self, '_self_parent', parent)
-
- def __get__(self, instance, owner):
- # This method is actually doing double duty for both unbound and
- # bound derived wrapper classes. It should possibly be broken up
- # and the distinct functionality moved into the derived classes.
- # Can't do that straight away due to some legacy code which is
- # relying on it being here in this base class.
- #
- # The distinguishing attribute which determines whether we are
- # being called in an unbound or bound wrapper is the parent
- # attribute. If binding has never occurred, then the parent will
- # be None.
- #
- # First therefore, is if we are called in an unbound wrapper. In
- # this case we perform the binding.
- #
- # We have one special case to worry about here. This is where we
- # are decorating a nested class. In this case the wrapped class
- # would not have a __get__() method to call. In that case we
- # simply return self.
- #
- # Note that we otherwise still do binding even if instance is
- # None and accessing an unbound instance method from a class.
- # This is because we need to be able to later detect that
- # specific case as we will need to extract the instance from the
- # first argument of those passed in.
-
- if self._self_parent is None:
- if not inspect.isclass(self.__wrapped__):
- descriptor = self.__wrapped__.__get__(instance, owner)
-
- return self.__bound_function_wrapper__(descriptor, instance,
- self._self_wrapper, self._self_enabled,
- self._self_binding, self)
-
- return self
-
- # Now we have the case of binding occurring a second time on what
- # was already a bound function. In this case we would usually
- # return ourselves again. This mirrors what Python does.
- #
- # The special case this time is where we were originally bound
- # with an instance of None and we were likely an instance
- # method. In that case we rebind against the original wrapped
- # function from the parent again.
-
- if self._self_instance is None and self._self_binding == 'function':
- descriptor = self._self_parent.__wrapped__.__get__(
- instance, owner)
-
- return self._self_parent.__bound_function_wrapper__(
- descriptor, instance, self._self_wrapper,
- self._self_enabled, self._self_binding,
- self._self_parent)
-
- return self
-
- def __call__(self, *args, **kwargs):
- # If enabled has been specified, then evaluate it at this point
- # and if the wrapper is not to be executed, then simply return
- # the bound function rather than a bound wrapper for the bound
- # function. When evaluating enabled, if it is callable we call
- # it, otherwise we evaluate it as a boolean.
-
- if self._self_enabled is not None:
- if callable(self._self_enabled):
- if not self._self_enabled():
- return self.__wrapped__(*args, **kwargs)
- elif not self._self_enabled:
- return self.__wrapped__(*args, **kwargs)
-
- # This can occur where initial function wrapper was applied to
- # a function that was already bound to an instance. In that case
- # we want to extract the instance from the function and use it.
-
- if self._self_binding == 'function':
- if self._self_instance is None:
- instance = getattr(self.__wrapped__, '__self__', None)
- if instance is not None:
- return self._self_wrapper(self.__wrapped__, instance,
- args, kwargs)
-
- # This is generally invoked when the wrapped function is being
- # called as a normal function and is not bound to a class as an
- # instance method. This is also invoked in the case where the
- # wrapped function was a method, but this wrapper was in turn
- # wrapped using the staticmethod decorator.
-
- return self._self_wrapper(self.__wrapped__, self._self_instance,
- args, kwargs)
-
- class BoundFunctionWrapper(_FunctionWrapperBase):
-
- def __call__(self, *args, **kwargs):
- # If enabled has been specified, then evaluate it at this point
- # and if the wrapper is not to be executed, then simply return
- # the bound function rather than a bound wrapper for the bound
- # function. When evaluating enabled, if it is callable we call
- # it, otherwise we evaluate it as a boolean.
-
- if self._self_enabled is not None:
- if callable(self._self_enabled):
- if not self._self_enabled():
- return self.__wrapped__(*args, **kwargs)
- elif not self._self_enabled:
- return self.__wrapped__(*args, **kwargs)
-
- # We need to do things different depending on whether we are
- # likely wrapping an instance method vs a static method or class
- # method.
-
- if self._self_binding == 'function':
- if self._self_instance is None:
- # This situation can occur where someone is calling the
- # instancemethod via the class type and passing the instance
- # as the first argument. We need to shift the args before
- # making the call to the wrapper and effectively bind the
- # instance to the wrapped function using a partial so the
- # wrapper doesn't see anything as being different.
-
- if not args:
- raise TypeError('missing 1 required positional argument')
-
- instance, args = args[0], args[1:]
- wrapped = functools.partial(self.__wrapped__, instance)
- return self._self_wrapper(wrapped, instance, args, kwargs)
-
- return self._self_wrapper(self.__wrapped__, self._self_instance,
- args, kwargs)
-
- else:
- # As in this case we would be dealing with a classmethod or
- # staticmethod, then _self_instance will only tell us whether
- # when calling the classmethod or staticmethod they did it via an
- # instance of the class it is bound to and not the case where
- # done by the class type itself. We thus ignore _self_instance
- # and use the __self__ attribute of the bound function instead.
- # For a classmethod, this means instance will be the class type
- # and for a staticmethod it will be None. This is probably the
- # more useful thing we can pass through even though we loose
- # knowledge of whether they were called on the instance vs the
- # class type, as it reflects what they have available in the
- # decoratored function.
-
- instance = getattr(self.__wrapped__, '__self__', None)
-
- return self._self_wrapper(self.__wrapped__, instance, args,
- kwargs)
-
- class FunctionWrapper(_FunctionWrapperBase):
-
- __bound_function_wrapper__ = BoundFunctionWrapper
-
- def __init__(self, wrapped, wrapper, enabled=None):
- # What it is we are wrapping here could be anything. We need to
- # try and detect specific cases though. In particular, we need
- # to detect when we are given something that is a method of a
- # class. Further, we need to know when it is likely an instance
- # method, as opposed to a class or static method. This can
- # become problematic though as there isn't strictly a fool proof
- # method of knowing.
- #
- # The situations we could encounter when wrapping a method are:
- #
- # 1. The wrapper is being applied as part of a decorator which
- # is a part of the class definition. In this case what we are
- # given is the raw unbound function, classmethod or staticmethod
- # wrapper objects.
- #
- # The problem here is that we will not know we are being applied
- # in the context of the class being set up. This becomes
- # important later for the case of an instance method, because in
- # that case we just see it as a raw function and can't
- # distinguish it from wrapping a normal function outside of
- # a class context.
- #
- # 2. The wrapper is being applied when performing monkey
- # patching of the class type afterwards and the method to be
- # wrapped was retrieved direct from the __dict__ of the class
- # type. This is effectively the same as (1) above.
- #
- # 3. The wrapper is being applied when performing monkey
- # patching of the class type afterwards and the method to be
- # wrapped was retrieved from the class type. In this case
- # binding will have been performed where the instance against
- # which the method is bound will be None at that point.
- #
- # This case is a problem because we can no longer tell if the
- # method was a static method, plus if using Python3, we cannot
- # tell if it was an instance method as the concept of an
- # unnbound method no longer exists.
- #
- # 4. The wrapper is being applied when performing monkey
- # patching of an instance of a class. In this case binding will
- # have been perfomed where the instance was not None.
- #
- # This case is a problem because we can no longer tell if the
- # method was a static method.
- #
- # Overall, the best we can do is look at the original type of the
- # object which was wrapped prior to any binding being done and
- # see if it is an instance of classmethod or staticmethod. In
- # the case where other decorators are between us and them, if
- # they do not propagate the __class__ attribute so that the
- # isinstance() checks works, then likely this will do the wrong
- # thing where classmethod and staticmethod are used.
- #
- # Since it is likely to be very rare that anyone even puts
- # decorators around classmethod and staticmethod, likelihood of
- # that being an issue is very small, so we accept it and suggest
- # that those other decorators be fixed. It is also only an issue
- # if a decorator wants to actually do things with the arguments.
- #
- # As to not being able to identify static methods properly, we
- # just hope that that isn't something people are going to want
- # to wrap, or if they do suggest they do it the correct way by
- # ensuring that it is decorated in the class definition itself,
- # or patch it in the __dict__ of the class type.
- #
- # So to get the best outcome we can, whenever we aren't sure what
- # it is, we label it as a 'function'. If it was already bound and
- # that is rebound later, we assume that it will be an instance
- # method and try an cope with the possibility that the 'self'
- # argument it being passed as an explicit argument and shuffle
- # the arguments around to extract 'self' for use as the instance.
-
- if isinstance(wrapped, classmethod):
- binding = 'classmethod'
-
- elif isinstance(wrapped, staticmethod):
- binding = 'staticmethod'
-
- elif hasattr(wrapped, '__self__'):
- if inspect.isclass(wrapped.__self__):
- binding = 'classmethod'
- else:
- binding = 'function'
-
- else:
- binding = 'function'
-
- super(FunctionWrapper, self).__init__(wrapped, None, wrapper,
- enabled, binding)
-
- try:
- if not os.environ.get('WRAPT_DISABLE_EXTENSIONS'):
- from ._wrappers import (ObjectProxy, CallableObjectProxy,
- FunctionWrapper, BoundFunctionWrapper, _FunctionWrapperBase)
- except ImportError:
- pass
-
- # Helper functions for applying wrappers to existing functions.
-
- def resolve_path(module, name):
- if isinstance(module, string_types):
- __import__(module)
- module = sys.modules[module]
-
- parent = module
-
- path = name.split('.')
- attribute = path[0]
-
- original = getattr(parent, attribute)
- for attribute in path[1:]:
- parent = original
-
- # We can't just always use getattr() because in doing
- # that on a class it will cause binding to occur which
- # will complicate things later and cause some things not
- # to work. For the case of a class we therefore access
- # the __dict__ directly. To cope though with the wrong
- # class being given to us, or a method being moved into
- # a base class, we need to walk the class hierarchy to
- # work out exactly which __dict__ the method was defined
- # in, as accessing it from __dict__ will fail if it was
- # not actually on the class given. Fallback to using
- # getattr() if we can't find it. If it truly doesn't
- # exist, then that will fail.
-
- if inspect.isclass(original):
- for cls in inspect.getmro(original):
- if attribute in vars(cls):
- original = vars(cls)[attribute]
- break
- else:
- original = getattr(original, attribute)
-
- else:
- original = getattr(original, attribute)
-
- return (parent, attribute, original)
-
- def apply_patch(parent, attribute, replacement):
- setattr(parent, attribute, replacement)
-
- def wrap_object(module, name, factory, args=(), kwargs={}):
- (parent, attribute, original) = resolve_path(module, name)
- wrapper = factory(original, *args, **kwargs)
- apply_patch(parent, attribute, wrapper)
- return wrapper
-
- # Function for applying a proxy object to an attribute of a class
- # instance. The wrapper works by defining an attribute of the same name
- # on the class which is a descriptor and which intercepts access to the
- # instance attribute. Note that this cannot be used on attributes which
- # are themselves defined by a property object.
-
- class AttributeWrapper(object):
-
- def __init__(self, attribute, factory, args, kwargs):
- self.attribute = attribute
- self.factory = factory
- self.args = args
- self.kwargs = kwargs
-
- def __get__(self, instance, owner):
- value = instance.__dict__[self.attribute]
- return self.factory(value, *self.args, **self.kwargs)
-
- def __set__(self, instance, value):
- instance.__dict__[self.attribute] = value
-
- def __delete__(self, instance):
- del instance.__dict__[self.attribute]
-
- def wrap_object_attribute(module, name, factory, args=(), kwargs={}):
- path, attribute = name.rsplit('.', 1)
- parent = resolve_path(module, path)[2]
- wrapper = AttributeWrapper(attribute, factory, args, kwargs)
- apply_patch(parent, attribute, wrapper)
- return wrapper
-
- # Functions for creating a simple decorator using a FunctionWrapper,
- # plus short cut functions for applying wrappers to functions. These are
- # for use when doing monkey patching. For a more featured way of
- # creating decorators see the decorator decorator instead.
-
- def function_wrapper(wrapper):
- def _wrapper(wrapped, instance, args, kwargs):
- target_wrapped = args[0]
- if instance is None:
- target_wrapper = wrapper
- elif inspect.isclass(instance):
- target_wrapper = wrapper.__get__(None, instance)
- else:
- target_wrapper = wrapper.__get__(instance, type(instance))
- return FunctionWrapper(target_wrapped, target_wrapper)
- return FunctionWrapper(wrapper, _wrapper)
-
- def wrap_function_wrapper(module, name, wrapper):
- return wrap_object(module, name, FunctionWrapper, (wrapper,))
-
- def patch_function_wrapper(module, name):
- def _wrapper(wrapper):
- return wrap_object(module, name, FunctionWrapper, (wrapper,))
- return _wrapper
-
- def transient_function_wrapper(module, name):
- def _decorator(wrapper):
- def _wrapper(wrapped, instance, args, kwargs):
- target_wrapped = args[0]
- if instance is None:
- target_wrapper = wrapper
- elif inspect.isclass(instance):
- target_wrapper = wrapper.__get__(None, instance)
- else:
- target_wrapper = wrapper.__get__(instance, type(instance))
- def _execute(wrapped, instance, args, kwargs):
- (parent, attribute, original) = resolve_path(module, name)
- replacement = FunctionWrapper(original, target_wrapper)
- setattr(parent, attribute, replacement)
- try:
- return wrapped(*args, **kwargs)
- finally:
- setattr(parent, attribute, original)
- return FunctionWrapper(target_wrapped, _execute)
- return FunctionWrapper(wrapper, _wrapper)
- return _decorator
-
- # A weak function proxy. This will work on instance methods, class
- # methods, static methods and regular functions. Special treatment is
- # needed for the method types because the bound method is effectively a
- # transient object and applying a weak reference to one will immediately
- # result in it being destroyed and the weakref callback called. The weak
- # reference is therefore applied to the instance the method is bound to
- # and the original function. The function is then rebound at the point
- # of a call via the weak function proxy.
-
- def _weak_function_proxy_callback(ref, proxy, callback):
- if proxy._self_expired:
- return
-
- proxy._self_expired = True
-
- # This could raise an exception. We let it propagate back and let
- # the weakref.proxy() deal with it, at which point it generally
- # prints out a short error message direct to stderr and keeps going.
-
- if callback is not None:
- callback(proxy)
-
- class WeakFunctionProxy(ObjectProxy):
-
- __slots__ = ('_self_expired', '_self_instance')
-
- def __init__(self, wrapped, callback=None):
- # We need to determine if the wrapped function is actually a
- # bound method. In the case of a bound method, we need to keep a
- # reference to the original unbound function and the instance.
- # This is necessary because if we hold a reference to the bound
- # function, it will be the only reference and given it is a
- # temporary object, it will almost immediately expire and
- # the weakref callback triggered. So what is done is that we
- # hold a reference to the instance and unbound function and
- # when called bind the function to the instance once again and
- # then call it. Note that we avoid using a nested function for
- # the callback here so as not to cause any odd reference cycles.
-
- _callback = callback and functools.partial(
- _weak_function_proxy_callback, proxy=self,
- callback=callback)
-
- self._self_expired = False
-
- if isinstance(wrapped, _FunctionWrapperBase):
- self._self_instance = weakref.ref(wrapped._self_instance,
- _callback)
-
- if wrapped._self_parent is not None:
- super(WeakFunctionProxy, self).__init__(
- weakref.proxy(wrapped._self_parent, _callback))
-
- else:
- super(WeakFunctionProxy, self).__init__(
- weakref.proxy(wrapped, _callback))
-
- return
-
- try:
- self._self_instance = weakref.ref(wrapped.__self__, _callback)
-
- super(WeakFunctionProxy, self).__init__(
- weakref.proxy(wrapped.__func__, _callback))
-
- except AttributeError:
- self._self_instance = None
-
- super(WeakFunctionProxy, self).__init__(
- weakref.proxy(wrapped, _callback))
-
- def __call__(self, *args, **kwargs):
- # We perform a boolean check here on the instance and wrapped
- # function as that will trigger the reference error prior to
- # calling if the reference had expired.
-
- instance = self._self_instance and self._self_instance()
- function = self.__wrapped__ and self.__wrapped__
-
- # If the wrapped function was originally a bound function, for
- # which we retained a reference to the instance and the unbound
- # function we need to rebind the function and then call it. If
- # not just called the wrapped function.
-
- if instance is None:
- return self.__wrapped__(*args, **kwargs)
-
- return function.__get__(instance, type(instance))(*args, **kwargs)
|