|
|
- """
- A module providing some utility functions regarding bezier path manipulation.
- """
-
- import warnings
-
- import numpy as np
- from matplotlib.path import Path
-
-
- class NonIntersectingPathException(ValueError):
- pass
-
- # some functions
-
-
- def get_intersection(cx1, cy1, cos_t1, sin_t1,
- cx2, cy2, cos_t2, sin_t2):
- """ return a intersecting point between a line through (cx1, cy1)
- and having angle t1 and a line through (cx2, cy2) and angle t2.
- """
-
- # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0.
- # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1
-
- line1_rhs = sin_t1 * cx1 - cos_t1 * cy1
- line2_rhs = sin_t2 * cx2 - cos_t2 * cy2
-
- # rhs matrix
- a, b = sin_t1, -cos_t1
- c, d = sin_t2, -cos_t2
-
- ad_bc = a * d - b * c
- if np.abs(ad_bc) < 1.0e-12:
- raise ValueError("Given lines do not intersect. Please verify that "
- "the angles are not equal or differ by 180 degrees.")
-
- # rhs_inverse
- a_, b_ = d, -b
- c_, d_ = -c, a
- a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]]
-
- x = a_ * line1_rhs + b_ * line2_rhs
- y = c_ * line1_rhs + d_ * line2_rhs
-
- return x, y
-
-
- def get_normal_points(cx, cy, cos_t, sin_t, length):
- """
- For a line passing through (*cx*, *cy*) and having a angle *t*, return
- locations of the two points located along its perpendicular line at the
- distance of *length*.
- """
-
- if length == 0.:
- return cx, cy, cx, cy
-
- cos_t1, sin_t1 = sin_t, -cos_t
- cos_t2, sin_t2 = -sin_t, cos_t
-
- x1, y1 = length * cos_t1 + cx, length * sin_t1 + cy
- x2, y2 = length * cos_t2 + cx, length * sin_t2 + cy
-
- return x1, y1, x2, y2
-
-
- # BEZIER routines
-
- # subdividing bezier curve
- # http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html
-
-
- def _de_casteljau1(beta, t):
- next_beta = beta[:-1] * (1 - t) + beta[1:] * t
- return next_beta
-
-
- def split_de_casteljau(beta, t):
- """split a bezier segment defined by its controlpoints *beta*
- into two separate segment divided at *t* and return their control points.
-
- """
- beta = np.asarray(beta)
- beta_list = [beta]
- while True:
- beta = _de_casteljau1(beta, t)
- beta_list.append(beta)
- if len(beta) == 1:
- break
- left_beta = [beta[0] for beta in beta_list]
- right_beta = [beta[-1] for beta in reversed(beta_list)]
-
- return left_beta, right_beta
-
-
- # FIXME spelling mistake in the name of the parameter ``tolerence``
- def find_bezier_t_intersecting_with_closedpath(bezier_point_at_t,
- inside_closedpath,
- t0=0., t1=1., tolerence=0.01):
- """ Find a parameter t0 and t1 of the given bezier path which
- bounds the intersecting points with a provided closed
- path(*inside_closedpath*). Search starts from *t0* and *t1* and it
- uses a simple bisecting algorithm therefore one of the end point
- must be inside the path while the orther doesn't. The search stop
- when |t0-t1| gets smaller than the given tolerence.
- value for
-
- - bezier_point_at_t : a function which returns x, y coordinates at *t*
-
- - inside_closedpath : return True if the point is inside the path
-
- """
- # inside_closedpath : function
-
- start = bezier_point_at_t(t0)
- end = bezier_point_at_t(t1)
-
- start_inside = inside_closedpath(start)
- end_inside = inside_closedpath(end)
-
- if start_inside == end_inside and start != end:
- raise NonIntersectingPathException(
- "Both points are on the same side of the closed path")
-
- while True:
-
- # return if the distance is smaller than the tolerence
- if np.hypot(start[0] - end[0], start[1] - end[1]) < tolerence:
- return t0, t1
-
- # calculate the middle point
- middle_t = 0.5 * (t0 + t1)
- middle = bezier_point_at_t(middle_t)
- middle_inside = inside_closedpath(middle)
-
- if start_inside ^ middle_inside:
- t1 = middle_t
- end = middle
- end_inside = middle_inside
- else:
- t0 = middle_t
- start = middle
- start_inside = middle_inside
-
-
- class BezierSegment(object):
- """
- A simple class of a 2-dimensional bezier segment
- """
-
- # Higher order bezier lines can be supported by simplying adding
- # corresponding values.
- _binom_coeff = {1: np.array([1., 1.]),
- 2: np.array([1., 2., 1.]),
- 3: np.array([1., 3., 3., 1.])}
-
- def __init__(self, control_points):
- """
- *control_points* : location of contol points. It needs have a
- shpae of n * 2, where n is the order of the bezier line. 1<=
- n <= 3 is supported.
- """
- _o = len(control_points)
- self._orders = np.arange(_o)
-
- _coeff = BezierSegment._binom_coeff[_o - 1]
- xx, yy = np.asarray(control_points).T
- self._px = xx * _coeff
- self._py = yy * _coeff
-
- def point_at_t(self, t):
- "evaluate a point at t"
- tt = ((1 - t) ** self._orders)[::-1] * t ** self._orders
- _x = np.dot(tt, self._px)
- _y = np.dot(tt, self._py)
- return _x, _y
-
-
- def split_bezier_intersecting_with_closedpath(bezier,
- inside_closedpath,
- tolerence=0.01):
-
- """
- bezier : control points of the bezier segment
- inside_closedpath : a function which returns true if the point is inside
- the path
- """
-
- bz = BezierSegment(bezier)
- bezier_point_at_t = bz.point_at_t
-
- t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t,
- inside_closedpath,
- tolerence=tolerence)
-
- _left, _right = split_de_casteljau(bezier, (t0 + t1) / 2.)
- return _left, _right
-
-
- def find_r_to_boundary_of_closedpath(inside_closedpath, xy,
- cos_t, sin_t,
- rmin=0., rmax=1., tolerence=0.01):
- """
- Find a radius r (centered at *xy*) between *rmin* and *rmax* at
- which it intersect with the path.
-
- inside_closedpath : function
- cx, cy : center
- cos_t, sin_t : cosine and sine for the angle
- rmin, rmax :
- """
-
- cx, cy = xy
-
- def _f(r):
- return cos_t * r + cx, sin_t * r + cy
-
- find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath,
- t0=rmin, t1=rmax,
- tolerence=tolerence)
-
- # matplotlib specific
-
-
- def split_path_inout(path, inside, tolerence=0.01, reorder_inout=False):
- """ divide a path into two segment at the point where inside(x, y)
- becomes False.
- """
-
- path_iter = path.iter_segments()
-
- ctl_points, command = next(path_iter)
- begin_inside = inside(ctl_points[-2:]) # true if begin point is inside
-
- ctl_points_old = ctl_points
-
- concat = np.concatenate
-
- iold = 0
- i = 1
-
- for ctl_points, command in path_iter:
- iold = i
- i += len(ctl_points) // 2
- if inside(ctl_points[-2:]) != begin_inside:
- bezier_path = concat([ctl_points_old[-2:], ctl_points])
- break
- ctl_points_old = ctl_points
- else:
- raise ValueError("The path does not intersect with the patch")
-
- bp = bezier_path.reshape((-1, 2))
- left, right = split_bezier_intersecting_with_closedpath(
- bp, inside, tolerence)
- if len(left) == 2:
- codes_left = [Path.LINETO]
- codes_right = [Path.MOVETO, Path.LINETO]
- elif len(left) == 3:
- codes_left = [Path.CURVE3, Path.CURVE3]
- codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3]
- elif len(left) == 4:
- codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4]
- codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]
- else:
- raise AssertionError("This should never be reached")
-
- verts_left = left[1:]
- verts_right = right[:]
-
- if path.codes is None:
- path_in = Path(concat([path.vertices[:i], verts_left]))
- path_out = Path(concat([verts_right, path.vertices[i:]]))
-
- else:
- path_in = Path(concat([path.vertices[:iold], verts_left]),
- concat([path.codes[:iold], codes_left]))
-
- path_out = Path(concat([verts_right, path.vertices[i:]]),
- concat([codes_right, path.codes[i:]]))
-
- if reorder_inout and begin_inside is False:
- path_in, path_out = path_out, path_in
-
- return path_in, path_out
-
-
- def inside_circle(cx, cy, r):
- r2 = r ** 2
-
- def _f(xy):
- x, y = xy
- return (x - cx) ** 2 + (y - cy) ** 2 < r2
- return _f
-
-
- # quadratic bezier lines
-
- def get_cos_sin(x0, y0, x1, y1):
- dx, dy = x1 - x0, y1 - y0
- d = (dx * dx + dy * dy) ** .5
- # Account for divide by zero
- if d == 0:
- return 0.0, 0.0
- return dx / d, dy / d
-
-
- def check_if_parallel(dx1, dy1, dx2, dy2, tolerence=1.e-5):
- """ returns
- * 1 if two lines are parralel in same direction
- * -1 if two lines are parralel in opposite direction
- * 0 otherwise
- """
- theta1 = np.arctan2(dx1, dy1)
- theta2 = np.arctan2(dx2, dy2)
- dtheta = np.abs(theta1 - theta2)
- if dtheta < tolerence:
- return 1
- elif np.abs(dtheta - np.pi) < tolerence:
- return -1
- else:
- return False
-
-
- def get_parallels(bezier2, width):
- """
- Given the quadratic bezier control points *bezier2*, returns
- control points of quadratic bezier lines roughly parallel to given
- one separated by *width*.
- """
-
- # The parallel bezier lines are constructed by following ways.
- # c1 and c2 are control points representing the begin and end of the
- # bezier line.
- # cm is the middle point
-
- c1x, c1y = bezier2[0]
- cmx, cmy = bezier2[1]
- c2x, c2y = bezier2[2]
-
- parallel_test = check_if_parallel(c1x - cmx, c1y - cmy,
- cmx - c2x, cmy - c2y)
-
- if parallel_test == -1:
- warnings.warn(
- "Lines do not intersect. A straight line is used instead.")
- cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y)
- cos_t2, sin_t2 = cos_t1, sin_t1
- else:
- # t1 and t2 is the angle between c1 and cm, cm, c2. They are
- # also a angle of the tangential line of the path at c1 and c2
- cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
- cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y)
-
- # find c1_left, c1_right which are located along the lines
- # through c1 and perpendicular to the tangential lines of the
- # bezier path at a distance of width. Same thing for c2_left and
- # c2_right with respect to c2.
- c1x_left, c1y_left, c1x_right, c1y_right = (
- get_normal_points(c1x, c1y, cos_t1, sin_t1, width)
- )
- c2x_left, c2y_left, c2x_right, c2y_right = (
- get_normal_points(c2x, c2y, cos_t2, sin_t2, width)
- )
-
- # find cm_left which is the intersectng point of a line through
- # c1_left with angle t1 and a line through c2_left with angle
- # t2. Same with cm_right.
- if parallel_test != 0:
- # a special case for a straight line, i.e., angle between two
- # lines are smaller than some (arbitrtay) value.
- cmx_left, cmy_left = (
- 0.5 * (c1x_left + c2x_left), 0.5 * (c1y_left + c2y_left)
- )
- cmx_right, cmy_right = (
- 0.5 * (c1x_right + c2x_right), 0.5 * (c1y_right + c2y_right)
- )
- else:
- cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1,
- sin_t1, c2x_left, c2y_left,
- cos_t2, sin_t2)
-
- cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1,
- sin_t1, c2x_right, c2y_right,
- cos_t2, sin_t2)
-
- # the parallel bezier lines are created with control points of
- # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right]
- path_left = [(c1x_left, c1y_left),
- (cmx_left, cmy_left),
- (c2x_left, c2y_left)]
- path_right = [(c1x_right, c1y_right),
- (cmx_right, cmy_right),
- (c2x_right, c2y_right)]
-
- return path_left, path_right
-
-
- def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y):
- """ Find control points of the bezier line through c1, mm, c2. We
- simply assume that c1, mm, c2 which have parametric value 0, 0.5, and 1.
- """
-
- cmx = .5 * (4 * mmx - (c1x + c2x))
- cmy = .5 * (4 * mmy - (c1y + c2y))
-
- return [(c1x, c1y), (cmx, cmy), (c2x, c2y)]
-
-
- def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.):
- """
- Being similar to get_parallels, returns control points of two quadrativ
- bezier lines having a width roughly parallel to given one separated by
- *width*.
- """
-
- # c1, cm, c2
- c1x, c1y = bezier2[0]
- cmx, cmy = bezier2[1]
- c3x, c3y = bezier2[2]
-
- # t1 and t2 is the angle between c1 and cm, cm, c3.
- # They are also a angle of the tangential line of the path at c1 and c3
- cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
- cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y)
-
- # find c1_left, c1_right which are located along the lines
- # through c1 and perpendicular to the tangential lines of the
- # bezier path at a distance of width. Same thing for c3_left and
- # c3_right with respect to c3.
- c1x_left, c1y_left, c1x_right, c1y_right = (
- get_normal_points(c1x, c1y, cos_t1, sin_t1, width * w1)
- )
- c3x_left, c3y_left, c3x_right, c3y_right = (
- get_normal_points(c3x, c3y, cos_t2, sin_t2, width * w2)
- )
-
- # find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and
- # c12-c23
- c12x, c12y = (c1x + cmx) * .5, (c1y + cmy) * .5
- c23x, c23y = (cmx + c3x) * .5, (cmy + c3y) * .5
- c123x, c123y = (c12x + c23x) * .5, (c12y + c23y) * .5
-
- # tangential angle of c123 (angle between c12 and c23)
- cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y)
-
- c123x_left, c123y_left, c123x_right, c123y_right = (
- get_normal_points(c123x, c123y, cos_t123, sin_t123, width * wm)
- )
-
- path_left = find_control_points(c1x_left, c1y_left,
- c123x_left, c123y_left,
- c3x_left, c3y_left)
- path_right = find_control_points(c1x_right, c1y_right,
- c123x_right, c123y_right,
- c3x_right, c3y_right)
-
- return path_left, path_right
-
-
- def make_path_regular(p):
- """
- fill in the codes if None.
- """
- c = p.codes
- if c is None:
- c = np.empty(p.vertices.shape[:1], "i")
- c.fill(Path.LINETO)
- c[0] = Path.MOVETO
-
- return Path(p.vertices, c)
- else:
- return p
-
-
- def concatenate_paths(paths):
- """
- concatenate list of paths into a single path.
- """
-
- vertices = []
- codes = []
- for p in paths:
- p = make_path_regular(p)
- vertices.append(p.vertices)
- codes.append(p.codes)
-
- _path = Path(np.concatenate(vertices),
- np.concatenate(codes))
- return _path
|