basabuuka_prototyp/Prototyp/FASTsearch.py

341 lines
11 KiB
Python
Raw Normal View History

2020-08-16 19:36:44 +02:00
# The new class FASTsearch. Every DB can be represented in Lists. The Brain actually is constituted from lists. Access to all Documents almost the same moment.
# TODO GPU Multithreading has to be implemented.
# USAGE: Learn scikit-learn count vectorizer on a database of lines or docs.
from sklearn.externals import joblib
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
import scipy as sc
import tensorflow as tf
import _pickle as cPickle
import hickle as hkl
import os
# Define function to convert scipy csr matrix to tf tensor for working on gpu
def convert_sparse_matrix_to_sparse_tensor(X):
coo = sc.sparse.coo_matrix(X)
indices = np.mat([coo.row, coo.col]).transpose()
return tf.SparseTensorValue(indices, coo.data, coo.shape)
# The whole class is initialized with input of the database in [['word','word2'],[],[],[]] List format, 2 dimensional, the index of the list in the matrix defines its id
## in every list element of the input, each document is represented by one string
# This list must be saved as a hkl dump and then loaded into the database.
def my_tokenizer(s):
return s.split('\+')
class FASTsearch(object):
def __init__(self, DatabaseDir):
self.DatabaseDir = DatabaseDir[:-4]
database = []
hkl_load = hkl.load(DatabaseDir)
for element in hkl_load:
#print('element',element)
#print('joined element', ' '.join(element))
database.append(' '.join(element))
# input has to be hkl format
self.database = database
def Gen_BoW_Model(self, max_features, analyzer, punctuation = False):
print("Creating the bag of words...\n")
from sklearn.feature_extraction.text import CountVectorizer
# Initialize the "CountVectorizer" object, which is scikit-learn's
# bag of words tool.
if punctuation == False:
vectorizer = CountVectorizer(analyzer = analyzer, \
tokenizer = None, \
preprocessor = None, \
stop_words = None, \
max_features = max_features)
if punctuation == True:
vectorizer = CountVectorizer(analyzer = analyzer, \
tokenizer = my_tokenizer, \
preprocessor = None, \
stop_words = None, \
max_features = max_features)
# token_pattern = r'(?u)\w')
# fit_transform() does two functions: First, it fits the model
# and learns the vocabulary; second, it transforms our training data
# into feature vectors. The input to fit_transform should be a list of
# strings.
train_data_features = vectorizer.fit_transform(self.database)
joblib.dump(vectorizer, 'bagofwords' + self.DatabaseDir + '.pkl')
print('dumping the data to hkl format..')
hkl.dump(train_data_features, 'DataBaseOneZeros' + self.DatabaseDir + '.hkl', mode='w', compression='gzip')
print('done')
return vectorizer
def Load_BoW_Model(self, BoWModelDir, DatabaseOneZerosDir):
# input has to be pkl format
self.vectorizer = joblib.load(BoWModelDir)
self.dbOZ = hkl.load(DatabaseOneZerosDir).astype('float32')
return self.vectorizer
# input: string to search for in the documents, the numberofmatches to get the best n documents
# output the numberofmatches documents with their indexes on the database which is searched, the highest accordance number plus index [index, number]
def search(self, string , numberofmatches):
numberofmatches = numberofmatches
# Convert user input to Zeros and Ones
user_array = []
user_array.append(string)
user_input_OnesZeros = self.vectorizer.transform(user_array)
uOZ = user_input_OnesZeros.toarray()[0].astype(np.float32, copy=False)
uiOZ = uOZ[np.newaxis, :]
uiOZ = uiOZ.transpose()
sess = tf.Session()
with sess.as_default():
uiOZ_tensor = tf.constant(uiOZ)
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
wCD = np.array(wordCountDoku.eval())
indexedwCD = []
for n in range(len(wCD)):
indexedwCD.append([n,wCD[n][0]])
indexedwCD = sorted(indexedwCD[::-1], key=lambda tup: tup[1], reverse=True)
best_n_documents = []
eq_number = 0
for number in uiOZ:
#print(number)
eq_number += number ** 2
#print(eq_number)
n = 0
done = False
while n < len(indexedwCD) and done == False:
n += 1
if indexedwCD[n][1] == eq_number:
best_n_documents = indexedwCD[n][0]
done = True
if indexedwCD[n][1] < eq_number:
best_n_documents = indexedwCD[n - 1][0]
done = True
#for n in range(numberofmatches):
#best_n_documents.append([indexedwCD[n][0], indexedwCD[n][1]])
return best_n_documents, indexedwCD[0]
def search_with_highest_multiplikation_Output(self, string , numberofmatches):
numberofmatches = numberofmatches
# Convert user input to Zeros and Ones
user_array = []
user_array.append(string)
user_input_OnesZeros = self.vectorizer.transform(user_array)
uOZ = user_input_OnesZeros.toarray()[0].astype(np.float32, copy=False)
uiOZ = uOZ[np.newaxis, :]
uiOZ = uiOZ.transpose()
sess = tf.Session()
with sess.as_default():
uiOZ_tensor = tf.constant(uiOZ)
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
wCD = np.array(wordCountDoku.eval())
indexedwCD = []
for n in range(len(wCD)):
indexedwCD.append([n,wCD[n][0]])
indexedwCD = sorted(indexedwCD[::-1], key=lambda tup: tup[1], reverse=True)
best_n_documents = []
for n in range(numberofmatches):
best_n_documents.append(indexedwCD[n][0])
return best_n_documents, indexedwCD[0]
def searchPatternMatch(self, string , numberofmatches):
numberofmatches = numberofmatches
# Convert user input to Zeros and Ones
user_array = []
user_array.append(string)
user_input_OnesZeros = self.vectorizer.transform(user_array)
uOZ = user_input_OnesZeros.toarray()[0].astype(np.float32, copy=False)
uiOZ = uOZ[np.newaxis, :]
uiOZ = uiOZ.transpose()
sess = tf.Session()
with sess.as_default():
uiOZ_tensor = tf.constant(uiOZ)
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
wCD = np.array(wordCountDoku.eval())
indexedwCD = []
for n in range(len(wCD)):
indexedwCD.append([n,wCD[n][0]])
# Sort the biggest matches
indexedwCD = sorted(indexedwCD[::-1], key=lambda tup: tup[1], reverse=True)
best_n_documents = []
best_docs_surrounding = []
# Get the number which is result when same words would be in the document as in one grammar scheme
eq_number = 0
for number in uiOZ:
#print(number)
eq_number += number ** 2
print(eq_number)
# Create new array of closest grammar schemes, I have chosen around 3 (in the matchnumber, not regarding words or so)
n = 0
done = False
while n < len(indexedwCD) and done == False:
n += 1
#print('a',indexedwCD)
#print('oo', indexedwCD[n])
if indexedwCD[n][1] == eq_number:
best_docs_surrounding.append(indexedwCD[n][0])
#if indexedwCD[n][1] < eq_number:
#best_docs_surrounding.append(indexedwCD[n][0])
if indexedwCD[n][1] < eq_number :
done = True
# Count for these docs in surrounding the matches of wordnumbers per word
# would be much faster when using the sparse class
best_docs_surrounding_new = []
for doc in best_docs_surrounding:
dok_BoW = self.dbOZ[doc].toarray()[0].astype(np.float32, copy=False)
Number_equal_words = 0
for n in range(len(uiOZ)):
#print(uiOZ[n])
#print(dok_BoW[n])
#print('dok_BoW',dok_BoW)
if uiOZ[n] == dok_BoW[n]:
Number_equal_words += 1
best_docs_surrounding_new.append([doc , Number_equal_words])
# Sort the result again with the original indexes
best_n_documents = sorted(best_docs_surrounding_new[::-1], key=lambda tup: tup[1], reverse=True)
#for n in range(numberofmatches):
#best_n_documents.append([indexedwCD[n][0], indexedwCD[n][1]])
return best_n_documents