basabuuka_prototyp/venv/lib/python3.5/site-packages/tqdm-4.28.1.dist-info/METADATA

954 lines
34 KiB
Text
Raw Normal View History

2020-08-16 19:36:44 +02:00
Metadata-Version: 2.1
Name: tqdm
Version: 4.28.1
Summary: Fast, Extensible Progress Meter
Home-page: https://github.com/tqdm/tqdm
Author: Noam Yorav-Raphael
Author-email: noamraph@gmail.com
Maintainer: tqdm developers
Maintainer-email: python.tqdm@gmail.com
License: MPLv2.0, MIT Licences
Keywords: progressbar progressmeter progress bar meter rate eta console terminal time
Platform: any
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Environment :: MacOS X
Classifier: Environment :: Other Environment
Classifier: Environment :: Win32 (MS Windows)
Classifier: Environment :: X11 Applications
Classifier: Framework :: IPython
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: End Users/Desktop
Classifier: Intended Audience :: Other Audience
Classifier: Intended Audience :: System Administrators
Classifier: License :: OSI Approved :: MIT License
Classifier: License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: POSIX
Classifier: Operating System :: POSIX :: BSD
Classifier: Operating System :: POSIX :: BSD :: FreeBSD
Classifier: Operating System :: POSIX :: Linux
Classifier: Operating System :: POSIX :: SunOS/Solaris
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.2
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: Implementation
Classifier: Programming Language :: Python :: Implementation :: IronPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Desktop Environment
Classifier: Topic :: Education :: Testing
Classifier: Topic :: Office/Business
Classifier: Topic :: Other/Nonlisted Topic
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Software Development :: User Interfaces
Classifier: Topic :: System :: Logging
Classifier: Topic :: System :: Monitoring
Classifier: Topic :: System :: Shells
Classifier: Topic :: Terminals
Classifier: Topic :: Utilities
Requires-Python: >=2.6, !=3.0.*, !=3.1.*
|Logo|
tqdm
====
|PyPI-Status| |PyPI-Versions| |Conda-Forge-Status|
|Build-Status| |Coverage-Status| |Branch-Coverage-Status| |Codacy-Grade|
|DOI-URI| |LICENCE| |OpenHub-Status|
``tqdm`` means "progress" in Arabic (taqadum, تقدّم)
and is an abbreviation for "I love you so much" in Spanish (te quiero demasiado).
Instantly make your loops show a smart progress meter - just wrap any
iterable with ``tqdm(iterable)``, and you're done!
.. code:: python
from tqdm import tqdm
for i in tqdm(range(10000)):
...
``76%|████████████████████████████         | 7568/10000 [00:33<00:10, 229.00it/s]``
``trange(N)`` can be also used as a convenient shortcut for
``tqdm(xrange(N))``.
|Screenshot|
REPL: `ptpython <https://github.com/jonathanslenders/ptpython>`__
It can also be executed as a module with pipes:
.. code:: sh
$ seq 9999999 | tqdm --unit_scale | wc -l
10.0Mit [00:02, 3.58Mit/s]
9999999
$ 7z a -bd -r backup.7z docs/ | grep Compressing | \
tqdm --total $(find docs/ -type f | wc -l) --unit files >> backup.log
100%|███████████████████████████████▉| 8014/8014 [01:37<00:00, 82.29files/s]
Overhead is low -- about 60ns per iteration (80ns with ``tqdm_gui``), and is
unit tested against performance regression.
By comparison, the well-established
`ProgressBar <https://github.com/niltonvolpato/python-progressbar>`__ has
an 800ns/iter overhead.
In addition to its low overhead, ``tqdm`` uses smart algorithms to predict
the remaining time and to skip unnecessary iteration displays, which allows
for a negligible overhead in most cases.
``tqdm`` works on any platform
(Linux, Windows, Mac, FreeBSD, NetBSD, Solaris/SunOS),
in any console or in a GUI, and is also friendly with IPython/Jupyter notebooks.
``tqdm`` does not require any dependencies (not even ``curses``!), just
Python and an environment supporting ``carriage return \r`` and
``line feed \n`` control characters.
------------------------------------------
.. contents:: Table of contents
:backlinks: top
:local:
Installation
------------
Latest PyPI stable release
~~~~~~~~~~~~~~~~~~~~~~~~~~
|PyPI-Status|
.. code:: sh
pip install tqdm
Latest development release on GitHub
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|GitHub-Status| |GitHub-Stars| |GitHub-Commits| |GitHub-Forks|
Pull and install in the current directory:
.. code:: sh
pip install -e git+https://github.com/tqdm/tqdm.git@master#egg=tqdm
Latest Conda release
~~~~~~~~~~~~~~~~~~~~
|Conda-Forge-Status|
.. code:: sh
conda install -c conda-forge tqdm
Changelog
---------
The list of all changes is available either on GitHub's Releases:
|GitHub-Status|, on the
`wiki <https://github.com/tqdm/tqdm/wiki/Releases>`__ or on crawlers such as
`allmychanges.com <https://allmychanges.com/p/python/tqdm/>`_.
Usage
-----
``tqdm`` is very versatile and can be used in a number of ways.
The three main ones are given below.
Iterable-based
~~~~~~~~~~~~~~
Wrap ``tqdm()`` around any iterable:
.. code:: python
text = ""
for char in tqdm(["a", "b", "c", "d"]):
text = text + char
``trange(i)`` is a special optimised instance of ``tqdm(range(i))``:
.. code:: python
for i in trange(100):
pass
Instantiation outside of the loop allows for manual control over ``tqdm()``:
.. code:: python
pbar = tqdm(["a", "b", "c", "d"])
for char in pbar:
pbar.set_description("Processing %s" % char)
Manual
~~~~~~
Manual control on ``tqdm()`` updates by using a ``with`` statement:
.. code:: python
with tqdm(total=100) as pbar:
for i in range(10):
pbar.update(10)
If the optional variable ``total`` (or an iterable with ``len()``) is
provided, predictive stats are displayed.
``with`` is also optional (you can just assign ``tqdm()`` to a variable,
but in this case don't forget to ``del`` or ``close()`` at the end:
.. code:: python
pbar = tqdm(total=100)
for i in range(10):
pbar.update(10)
pbar.close()
Module
~~~~~~
Perhaps the most wonderful use of ``tqdm`` is in a script or on the command
line. Simply inserting ``tqdm`` (or ``python -m tqdm``) between pipes will pass
through all ``stdin`` to ``stdout`` while printing progress to ``stderr``.
The example below demonstrated counting the number of lines in all Python files
in the current directory, with timing information included.
.. code:: sh
$ time find . -name '*.py' -exec cat \{} \; | wc -l
857365
real 0m3.458s
user 0m0.274s
sys 0m3.325s
$ time find . -name '*.py' -exec cat \{} \; | tqdm | wc -l
857366it [00:03, 246471.31it/s]
857365
real 0m3.585s
user 0m0.862s
sys 0m3.358s
Note that the usual arguments for ``tqdm`` can also be specified.
.. code:: sh
$ find . -name '*.py' -exec cat \{} \; |
tqdm --unit loc --unit_scale --total 857366 >> /dev/null
100%|███████████████████████████████████| 857K/857K [00:04<00:00, 246Kloc/s]
Backing up a large directory?
.. code:: sh
$ 7z a -bd -r backup.7z docs/ | grep Compressing |
tqdm --total $(find docs/ -type f | wc -l) --unit files >> backup.log
100%|███████████████████████████████▉| 8014/8014 [01:37<00:00, 82.29files/s]
FAQ and Known Issues
--------------------
|GitHub-Issues|
The most common issues relate to excessive output on multiple lines, instead
of a neat one-line progress bar.
- Consoles in general: require support for carriage return (``CR``, ``\r``).
- Nested progress bars:
* Consoles in general: require support for moving cursors up to the
previous line. For example,
`IDLE <https://github.com/tqdm/tqdm/issues/191#issuecomment-230168030>`__,
`ConEmu <https://github.com/tqdm/tqdm/issues/254>`__ and
`PyCharm <https://github.com/tqdm/tqdm/issues/203>`__ (also
`here <https://github.com/tqdm/tqdm/issues/208>`__,
`here <https://github.com/tqdm/tqdm/issues/307>`__, and
`here <https://github.com/tqdm/tqdm/issues/454#issuecomment-335416815>`__)
lack full support.
* Windows: additionally may require the Python module ``colorama``
to ensure nested bars stay within their respective lines.
- Unicode:
* Environments which report that they support unicode will have solid smooth
progressbars. The fallback is an `ascii`-only bar.
* Windows consoles often only partially support unicode and thus
`often require explicit ascii=True <https://github.com/tqdm/tqdm/issues/454#issuecomment-335416815>`__
(also `here <https://github.com/tqdm/tqdm/issues/499>`__). This is due to
either normal-width unicode characters being incorrectly displayed as
"wide", or some unicode characters not rendering.
- Wrapping enumerated iterables: use ``enumerate(tqdm(...))`` instead of
``tqdm(enumerate(...))``. The same applies to ``numpy.ndenumerate``.
This is because enumerate functions tend to hide the length of iterables.
``tqdm`` does not.
- Wrapping zipped iterables has similar issues due to internal optimisations.
``tqdm(zip(a, b))`` should be replaced with ``zip(tqdm(a), b)`` or even
``zip(tqdm(a), tqdm(b))``.
If you come across any other difficulties, browse and file |GitHub-Issues|.
Documentation
-------------
|PyPI-Versions| |README-Hits| (Since 19 May 2016)
.. code:: python
class tqdm(object):
"""
Decorate an iterable object, returning an iterator which acts exactly
like the original iterable, but prints a dynamically updating
progressbar every time a value is requested.
"""
def __init__(self, iterable=None, desc=None, total=None, leave=True,
file=None, ncols=None, mininterval=0.1,
maxinterval=10.0, miniters=None, ascii=None, disable=False,
unit='it', unit_scale=False, dynamic_ncols=False,
smoothing=0.3, bar_format=None, initial=0, position=None,
postfix=None, unit_divisor=1000):
Parameters
~~~~~~~~~~
* iterable : iterable, optional
Iterable to decorate with a progressbar.
Leave blank to manually manage the updates.
* desc : str, optional
Prefix for the progressbar.
* total : int, optional
The number of expected iterations. If unspecified,
len(iterable) is used if possible. As a last resort, only basic
progress statistics are displayed (no ETA, no progressbar).
If ``gui`` is True and this parameter needs subsequent updating,
specify an initial arbitrary large positive integer,
e.g. int(9e9).
* leave : bool, optional
If [default: True], keeps all traces of the progressbar
upon termination of iteration.
* file : ``io.TextIOWrapper`` or ``io.StringIO``, optional
Specifies where to output the progress messages
(default: sys.stderr). Uses ``file.write(str)`` and ``file.flush()``
methods.
* ncols : int, optional
The width of the entire output message. If specified,
dynamically resizes the progressbar to stay within this bound.
If unspecified, attempts to use environment width. The
fallback is a meter width of 10 and no limit for the counter and
statistics. If 0, will not print any meter (only stats).
* mininterval : float, optional
Minimum progress display update interval [default: 0.1] seconds.
* maxinterval : float, optional
Maximum progress display update interval [default: 10] seconds.
Automatically adjusts ``miniters`` to correspond to ``mininterval``
after long display update lag. Only works if ``dynamic_miniters``
or monitor thread is enabled.
* miniters : int, optional
Minimum progress display update interval, in iterations.
If 0 and ``dynamic_miniters``, will automatically adjust to equal
``mininterval`` (more CPU efficient, good for tight loops).
If > 0, will skip display of specified number of iterations.
Tweak this and ``mininterval`` to get very efficient loops.
If your progress is erratic with both fast and slow iterations
(network, skipping items, etc) you should set miniters=1.
* ascii : bool, optional
If unspecified or False, use unicode (smooth blocks) to fill
the meter. The fallback is to use ASCII characters ``1-9 #``.
* disable : bool, optional
Whether to disable the entire progressbar wrapper
[default: False]. If set to None, disable on non-TTY.
* unit : str, optional
String that will be used to define the unit of each iteration
[default: it].
* unit_scale : bool or int or float, optional
If 1 or True, the number of iterations will be reduced/scaled
automatically and a metric prefix following the
International System of Units standard will be added
(kilo, mega, etc.) [default: False]. If any other non-zero
number, will scale `total` and `n`.
* dynamic_ncols : bool, optional
If set, constantly alters ``ncols`` to the environment (allowing
for window resizes) [default: False].
* smoothing : float, optional
Exponential moving average smoothing factor for speed estimates
(ignored in GUI mode). Ranges from 0 (average speed) to 1
(current/instantaneous speed) [default: 0.3].
* bar_format : str, optional
Specify a custom bar string formatting. May impact performance.
[default: '{l_bar}{bar}{r_bar}'], where
l_bar='{desc}: {percentage:3.0f}%|' and
r_bar='| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, '
'{rate_fmt}{postfix}]'
Possible vars: l_bar, bar, r_bar, n, n_fmt, total, total_fmt,
percentage, rate, rate_fmt, rate_noinv, rate_noinv_fmt,
rate_inv, rate_inv_fmt, elapsed, remaining, desc, postfix.
Note that a trailing ": " is automatically removed after {desc}
if the latter is empty.
* initial : int, optional
The initial counter value. Useful when restarting a progress
bar [default: 0].
* position : int, optional
Specify the line offset to print this bar (starting from 0)
Automatic if unspecified.
Useful to manage multiple bars at once (eg, from threads).
* postfix : dict or ``*``, optional
Specify additional stats to display at the end of the bar.
Calls ``set_postfix(**postfix)`` if possible (dict).
* unit_divisor : float, optional
[default: 1000], ignored unless `unit_scale` is True.
Extra CLI Options
~~~~~~~~~~~~~~~~~
* delim : chr, optional
Delimiting character [default: '\n']. Use '\0' for null.
N.B.: on Windows systems, Python converts '\n' to '\r\n'.
* buf_size : int, optional
String buffer size in bytes [default: 256]
used when ``delim`` is specified.
* bytes : bool, optional
If true, will count bytes and ignore ``delim``.
Returns
~~~~~~~
* out : decorated iterator.
.. code:: python
def update(self, n=1):
"""
Manually update the progress bar, useful for streams
such as reading files.
E.g.:
>>> t = tqdm(total=filesize) # Initialise
>>> for current_buffer in stream:
... ...
... t.update(len(current_buffer))
>>> t.close()
The last line is highly recommended, but possibly not necessary if
``t.update()`` will be called in such a way that ``filesize`` will be
exactly reached and printed.
Parameters
----------
n : int, optional
Increment to add to the internal counter of iterations
[default: 1].
"""
def close(self):
"""
Cleanup and (if leave=False) close the progressbar.
"""
def unpause(self):
"""
Restart tqdm timer from last print time.
"""
def clear(self, nomove=False):
"""
Clear current bar display
"""
def refresh(self):
"""
Force refresh the display of this bar
"""
def write(cls, s, file=sys.stdout, end="\n"):
"""
Print a message via tqdm (without overlap with bars)
"""
def set_description(self, desc=None, refresh=True):
"""
Set/modify description of the progress bar.
Parameters
----------
desc : str, optional
refresh : bool, optional
Forces refresh [default: True].
"""
def set_postfix(self, ordered_dict=None, refresh=True, **kwargs):
"""
Set/modify postfix (additional stats)
with automatic formatting based on datatype.
Parameters
----------
refresh : bool, optional
Forces refresh [default: True].
"""
def trange(*args, **kwargs):
"""
A shortcut for tqdm(xrange(*args), **kwargs).
On Python3+ range is used instead of xrange.
"""
class tqdm_gui(tqdm):
"""
Experimental GUI version of tqdm!
"""
def tgrange(*args, **kwargs):
"""
Experimental GUI version of trange!
"""
class tqdm_notebook(tqdm):
"""
Experimental IPython/Jupyter Notebook widget using tqdm!
"""
def tnrange(*args, **kwargs):
"""
Experimental IPython/Jupyter Notebook widget using tqdm!
"""
Examples and Advanced Usage
---------------------------
- See the `examples <https://github.com/tqdm/tqdm/tree/master/examples>`__
folder;
- import the module and run ``help()``, or
- consult the `wiki <https://github.com/tqdm/tqdm/wiki>`__.
- this has an
`excellent article <https://github.com/tqdm/tqdm/wiki/How-to-make-a-great-Progress-Bar>`__
on how to make a **great** progressbar.
Description and additional stats
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Custom information can be displayed and updated dynamically on ``tqdm`` bars
with the ``desc`` and ``postfix`` arguments:
.. code:: python
from tqdm import trange
from random import random, randint
from time import sleep
with trange(100) as t:
for i in t:
# Description will be displayed on the left
t.set_description('GEN %i' % i)
# Postfix will be displayed on the right,
# formatted automatically based on argument's datatype
t.set_postfix(loss=random(), gen=randint(1,999), str='h',
lst=[1, 2])
sleep(0.1)
with tqdm(total=10, bar_format="{postfix[0]} {postfix[1][value]:>8.2g}",
postfix=["Batch", dict(value=0)]) as t:
for i in range(10):
sleep(0.1)
t.postfix[1]["value"] = i / 2
t.update()
Points to remember when using ``{postfix[...]}`` in the ``bar_format`` string:
- ``postfix`` also needs to be passed as an initial argument in a compatible
format, and
- ``postfix`` will be auto-converted to a string if it is a ``dict``-like
object. To prevent this behaviour, insert an extra item into the dictionary
where the key is not a string.
Nested progress bars
~~~~~~~~~~~~~~~~~~~~
``tqdm`` supports nested progress bars. Here's an example:
.. code:: python
from tqdm import trange
from time import sleep
for i in trange(10, desc='1st loop'):
for j in trange(5, desc='2nd loop', leave=False):
for k in trange(100, desc='3nd loop'):
sleep(0.01)
On Windows `colorama <https://github.com/tartley/colorama>`__ will be used if
available to keep nested bars on their respective lines.
For manual control over positioning (e.g. for multi-threaded use),
you may specify ``position=n`` where ``n=0`` for the outermost bar,
``n=1`` for the next, and so on:
.. code:: python
from time import sleep
from tqdm import trange, tqdm
from multiprocessing import Pool, freeze_support, RLock
L = list(range(9))
def progresser(n):
interval = 0.001 / (n + 2)
total = 5000
text = "#{}, est. {:<04.2}s".format(n, interval * total)
for i in trange(total, desc=text, position=n):
sleep(interval)
if __name__ == '__main__':
freeze_support() # for Windows support
p = Pool(len(L),
# again, for Windows support
initializer=tqdm.set_lock, initargs=(RLock(),))
p.map(progresser, L)
print("\n" * (len(L) - 2))
Hooks and callbacks
~~~~~~~~~~~~~~~~~~~
``tqdm`` can easily support callbacks/hooks and manual updates.
Here's an example with ``urllib``:
**urllib.urlretrieve documentation**
| [...]
| If present, the hook function will be called once
| on establishment of the network connection and once after each block read
| thereafter. The hook will be passed three arguments; a count of blocks
| transferred so far, a block size in bytes, and the total size of the file.
| [...]
.. code:: python
import urllib, os
from tqdm import tqdm
class TqdmUpTo(tqdm):
"""Provides `update_to(n)` which uses `tqdm.update(delta_n)`."""
def update_to(self, b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks transferred so far [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n) # will also set self.n = b * bsize
eg_link = "https://caspersci.uk.to/matryoshka.zip"
with TqdmUpTo(unit='B', unit_scale=True, miniters=1,
desc=eg_link.split('/')[-1]) as t: # all optional kwargs
urllib.urlretrieve(eg_link, filename=os.devnull,
reporthook=t.update_to, data=None)
Inspired by `twine#242 <https://github.com/pypa/twine/pull/242>`__.
Functional alternative in
`examples/tqdm_wget.py <https://github.com/tqdm/tqdm/blob/master/examples/tqdm_wget.py>`__.
It is recommend to use ``miniters=1`` whenever there is potentially
large differences in iteration speed (e.g. downloading a file over
a patchy connection).
Pandas Integration
~~~~~~~~~~~~~~~~~~
Due to popular demand we've added support for ``pandas`` -- here's an example
for ``DataFrame.progress_apply`` and ``DataFrameGroupBy.progress_apply``:
.. code:: python
import pandas as pd
import numpy as np
from tqdm import tqdm
df = pd.DataFrame(np.random.randint(0, 100, (100000, 6)))
# Register `pandas.progress_apply` and `pandas.Series.map_apply` with `tqdm`
# (can use `tqdm_gui`, `tqdm_notebook`, optional kwargs, etc.)
tqdm.pandas(desc="my bar!")
# Now you can use `progress_apply` instead of `apply`
# and `progress_map` instead of `map`
df.progress_apply(lambda x: x**2)
# can also groupby:
# df.groupby(0).progress_apply(lambda x: x**2)
In case you're interested in how this works (and how to modify it for your
own callbacks), see the
`examples <https://github.com/tqdm/tqdm/tree/master/examples>`__
folder or import the module and run ``help()``.
IPython/Jupyter Integration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
IPython/Jupyter is supported via the ``tqdm_notebook`` submodule:
.. code:: python
from tqdm import tnrange, tqdm_notebook
from time import sleep
for i in tnrange(10, desc='1st loop'):
for j in tqdm_notebook(xrange(100), desc='2nd loop'):
sleep(0.01)
In addition to ``tqdm`` features, the submodule provides a native Jupyter
widget (compatible with IPython v1-v4 and Jupyter), fully working nested bars
and color hints (blue: normal, green: completed, red: error/interrupt,
light blue: no ETA); as demonstrated below.
|Screenshot-Jupyter1|
|Screenshot-Jupyter2|
|Screenshot-Jupyter3|
It is also possible to let ``tqdm`` automatically choose between
console or notebook versions by using the ``autonotebook`` submodule:
.. code:: python
from tqdm.autonotebook import tqdm
tqdm.pandas()
Note that this will issue a ``TqdmExperimentalWarning`` if run in a notebook
since it is not meant to be possible to distinguish between ``jupyter notebook``
and ``jupyter console``. Use ``auto`` instead of ``autonotebook`` to suppress
this warning.
Writing messages
~~~~~~~~~~~~~~~~
Since ``tqdm`` uses a simple printing mechanism to display progress bars,
you should not write any message in the terminal using ``print()`` while
a progressbar is open.
To write messages in the terminal without any collision with ``tqdm`` bar
display, a ``.write()`` method is provided:
.. code:: python
from tqdm import tqdm, trange
from time import sleep
bar = trange(10)
for i in bar:
# Print using tqdm class method .write()
sleep(0.1)
if not (i % 3):
tqdm.write("Done task %i" % i)
# Can also use bar.write()
By default, this will print to standard output ``sys.stdout``. but you can
specify any file-like object using the ``file`` argument. For example, this
can be used to redirect the messages writing to a log file or class.
Redirecting writing
~~~~~~~~~~~~~~~~~~~
If using a library that can print messages to the console, editing the library
by replacing ``print()`` with ``tqdm.write()`` may not be desirable.
In that case, redirecting ``sys.stdout`` to ``tqdm.write()`` is an option.
To redirect ``sys.stdout``, create a file-like class that will write
any input string to ``tqdm.write()``, and supply the arguments
``file=sys.stdout, dynamic_ncols=True``.
A reusable canonical example is given below:
.. code:: python
from time import sleep
import contextlib
import sys
from tqdm import tqdm
class DummyTqdmFile(object):
"""Dummy file-like that will write to tqdm"""
file = None
def __init__(self, file):
self.file = file
def write(self, x):
# Avoid print() second call (useless \n)
if len(x.rstrip()) > 0:
tqdm.write(x, file=self.file)
def flush(self):
return getattr(self.file, "flush", lambda: None)()
@contextlib.contextmanager
def std_out_err_redirect_tqdm():
orig_out_err = sys.stdout, sys.stderr
try:
sys.stdout, sys.stderr = map(DummyTqdmFile, orig_out_err)
yield orig_out_err[0]
# Relay exceptions
except Exception as exc:
raise exc
# Always restore sys.stdout/err if necessary
finally:
sys.stdout, sys.stderr = orig_out_err
def some_fun(i):
print("Fee, fi, fo,".split()[i])
# Redirect stdout to tqdm.write() (don't forget the `as save_stdout`)
with std_out_err_redirect_tqdm() as orig_stdout:
# tqdm needs the original stdout
# and dynamic_ncols=True to autodetect console width
for i in tqdm(range(3), file=orig_stdout, dynamic_ncols=True):
sleep(.5)
some_fun(i)
# After the `with`, printing is restored
print("Done!")
Monitoring thread, intervals and miniters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``tqdm`` implements a few tricks to to increase efficiency and reduce overhead.
- Avoid unnecessary frequent bar refreshing: ``mininterval`` defines how long
to wait between each refresh. ``tqdm`` always gets updated in the background,
but it will diplay only every ``mininterval``.
- Reduce number of calls to check system clock/time.
- ``mininterval`` is more intuitive to configure than ``miniters``.
A clever adjustment system ``dynamic_miniters`` will automatically adjust
``miniters`` to the amount of iterations that fit into time ``mininterval``.
Essentially, ``tqdm`` will check if it's time to print without actually
checking time. This behaviour can be still be bypassed by manually setting
``miniters``.
However, consider a case with a combination of fast and slow iterations.
After a few fast iterations, ``dynamic_miniters`` will set ``miniters`` to a
large number. When iteration rate subsequently slows, ``miniters`` will
remain large and thus reduce display update frequency. To address this:
- ``maxinterval`` defines the maximum time between display refreshes.
A concurrent monitoring thread checks for overdue updates and forces one
where necessary.
The monitoring thread should not have a noticeable overhead, and guarantees
updates at least every 10 seconds by default.
This value can be directly changed by setting the ``monitor_interval`` of
any ``tqdm`` instance (i.e. ``t = tqdm.tqdm(...); t.monitor_interval = 2``).
The monitor thread may be disabled application-wide by setting
``tqdm.tqdm.monitor_interval = 0`` before instantiatiation of any ``tqdm`` bar.
Contributions
-------------
|GitHub-Commits| |GitHub-Issues| |GitHub-PRs| |OpenHub-Status|
All source code is hosted on `GitHub <https://github.com/tqdm/tqdm>`__.
Contributions are welcome.
See the
`CONTRIBUTING <https://raw.githubusercontent.com/tqdm/tqdm/master/CONTRIBUTING.md>`__
file for more information.
Ports to Other Languages
~~~~~~~~~~~~~~~~~~~~~~~~
A list is available on
`this wiki page <https://github.com/tqdm/tqdm/wiki/tqdm-ports>`__.
LICENCE
-------
Open Source (OSI approved): |LICENCE|
Citation information: |DOI-URI|
Authors
-------
The main developers, ranked by surviving lines of code
(`git fame -wMC <https://github.com/casperdcl/git-fame>`__), are:
- Casper da Costa-Luis (`casperdcl <https://github.com/casperdcl>`__, ~2/3, |Gift-Casper|)
- Stephen Larroque (`lrq3000 <https://github.com/lrq3000>`__, ~1/5)
- Hadrien Mary (`hadim <https://github.com/hadim>`__, ~2%)
- Guangshuo Chen (`chengs <https://github.com/chengs>`__, ~1%)
- Noam Yorav-Raphael (`noamraph <https://github.com/noamraph>`__, ~1%, original author)
- Mikhail Korobov (`kmike <https://github.com/kmike>`__, ~1%)
There are also many |GitHub-Contributions| which we are grateful for.
|README-Hits| (Since 19 May 2016)
.. |Logo| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/images/logo.gif
.. |Screenshot| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/images/tqdm.gif
.. |Build-Status| image:: https://travis-ci.org/tqdm/tqdm.svg?branch=master
:target: https://travis-ci.org/tqdm/tqdm
.. |Coverage-Status| image:: https://coveralls.io/repos/tqdm/tqdm/badge.svg?branch=master
:target: https://coveralls.io/github/tqdm/tqdm
.. |Branch-Coverage-Status| image:: https://codecov.io/gh/tqdm/tqdm/branch/master/graph/badge.svg
:target: https://codecov.io/gh/tqdm/tqdm
.. |Codacy-Grade| image:: https://api.codacy.com/project/badge/Grade/3f965571598f44549c7818f29cdcf177
:target: https://www.codacy.com/app/tqdm/tqdm?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=tqdm/tqdm&amp;utm_campaign=Badge_Grade
.. |GitHub-Status| image:: https://img.shields.io/github/tag/tqdm/tqdm.svg?maxAge=86400
:target: https://github.com/tqdm/tqdm/releases
.. |GitHub-Forks| image:: https://img.shields.io/github/forks/tqdm/tqdm.svg
:target: https://github.com/tqdm/tqdm/network
.. |GitHub-Stars| image:: https://img.shields.io/github/stars/tqdm/tqdm.svg
:target: https://github.com/tqdm/tqdm/stargazers
.. |GitHub-Commits| image:: https://img.shields.io/github/commit-activity/y/tqdm/tqdm.svg
:target: https://github.com/tqdm/tqdm/graphs/commit-activity
.. |GitHub-Issues| image:: https://img.shields.io/github/issues-closed/tqdm/tqdm.svg
:target: https://github.com/tqdm/tqdm/issues
.. |GitHub-PRs| image:: https://img.shields.io/github/issues-pr-closed/tqdm/tqdm.svg
:target: https://github.com/tqdm/tqdm/pulls
.. |GitHub-Contributions| image:: https://img.shields.io/github/contributors/tqdm/tqdm.svg
:target: https://github.com/tqdm/tqdm/graphs/contributors
.. |Gift-Casper| image:: https://img.shields.io/badge/gift-donate-ff69b4.svg
:target: https://caspersci.uk.to/donate.html
.. |PyPI-Status| image:: https://img.shields.io/pypi/v/tqdm.svg
:target: https://pypi.org/project/tqdm
.. |PyPI-Downloads| image:: https://img.shields.io/pypi/dm/tqdm.svg
:target: https://pypi.org/project/tqdm
.. |PyPI-Versions| image:: https://img.shields.io/pypi/pyversions/tqdm.svg
:target: https://pypi.org/project/tqdm
.. |Conda-Forge-Status| image:: https://anaconda.org/conda-forge/tqdm/badges/version.svg
:target: https://anaconda.org/conda-forge/tqdm
.. |OpenHub-Status| image:: https://www.openhub.net/p/tqdm/widgets/project_thin_badge?format=gif
:target: https://www.openhub.net/p/tqdm?ref=Thin+badge
.. |LICENCE| image:: https://img.shields.io/pypi/l/tqdm.svg
:target: https://raw.githubusercontent.com/tqdm/tqdm/master/LICENCE
.. |DOI-URI| image:: https://zenodo.org/badge/21637/tqdm/tqdm.svg
:target: https://zenodo.org/badge/latestdoi/21637/tqdm/tqdm
.. |Screenshot-Jupyter1| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/images/tqdm-jupyter-1.gif
.. |Screenshot-Jupyter2| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/images/tqdm-jupyter-2.gif
.. |Screenshot-Jupyter3| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/images/tqdm-jupyter-3.gif
.. |README-Hits| image:: https://caspersci.uk.to/cgi-bin/hits.cgi?q=tqdm&style=social&r=https://github.com/tqdm/tqdm&l=https://caspersci.uk.to/images/tqdm.png&f=https://raw.githubusercontent.com/tqdm/tqdm/master/images/logo.gif
:target: https://caspersci.uk.to/cgi-bin/hits.cgi?q=tqdm&a=plot&r=https://github.com/tqdm/tqdm&l=https://caspersci.uk.to/images/tqdm.png&f=https://raw.githubusercontent.com/tqdm/tqdm/master/images/logo.gif&style=social